
1

Few-Shot Adaptation to Unseen Conditions for Wireless-based
Human Activity Recognition without Fine-tuning

Xiaotong Zhang*, Student Member, IEEE, Qingqiao Hu*, Student Member, IEEE, Zhen Xiao, Student Member, IEEE, Tao
Sun, Student Member, IEEE, Jiaxi Zhang, Student Member, IEEE, Jin Zhang, Member, IEEE, and Zhenjiang Li, Member, IEEE

Abstract—Wireless-based human activity recognition (WHAR) enables various promising applications. However, since WHAR is
sensitive to changes in sensing conditions (e.g., different environments, users, and new activities), trained models often do not work
well under new conditions. Recent research uses meta-learning to adapt models. However, they must fine-tune the model, which
greatly hinders the widespread adoption of WHAR in practice because model fine-tuning is difficult to automate and requires
deep-learning expertise. The fundamental reason for model fine-tuning in existing works is because their goal is to find the mapping
relationship between data samples and corresponding activity labels. Since this mapping reflects the intrinsic properties of data in the
perceptual scene, it is naturally related to the conditions under which the activity is sensed. To address this problem, we exploit the
principle that under the same sensing condition, data of the same activity class are more similar (in a certain latent space) than data of
other classes, and this property holds invariant across different conditions. Our main observation is that meta-learning can actually also
transform WHAR design into a learning problem that is always under similar conditions, thus decoupling the dependence on sensing
conditions. With this capability, general and accurate WHAR can be achieved, avoiding model fine-tuning. In this paper, we implement
this idea through two innovative designs in a system called RoMF. Extensive experiments using FMCW, Wi-Fi and acoustic three
sensing signals show that it can achieve up to 95.3% accuracy in unseen conditions, including new environments, users and activity
classes.

Index Terms—Mobile computing, activity recognition, few-shot learning, wireless sensing.

✦

1 INTRODUCTION

W Ireless-based Human Activity Recognition (WHAR)
uses wireless signals as the sensing media to rec-

ognize human activities or gestures [1], [2]. Due to the
advantages of through-wall sensing, robustness to ambient
light conditions, and better protection of user privacy than
other peer technologies such as computer vision [3], [4], the
WHAR technology can enable many promising and use-
ful applications in human-computer interaction [5], health-
care [6], [7], smart home [8], [9], etc. With the recent success

* Both authors contributed equally to this research.

• X. Zhang is with the Research Institute of Trustworthy Autonomous
Systems and the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China and the
Department of Computer Science, City University of Hong Kong, Hong
Kong, China. E-mail: xzhang2587-c@my.cityu.edu.hk.

• Q. Hu is with the Department of Computer Science, Stony Brook Uni-
versity, New York, U.S. and the Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen,
China. E-mail: qingqiao.hu@stonybrook.edu.

• T. Sun is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China. E-mail:
12232426@mail.sustech.edu.cn.

• Jiaxi Zhang is with the Department of Computer Science and Engi-
neering, The Hong Kong University of Science and Technology, Hong
Kong, China and the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China. E-mail:
jzhanghl@connect.ust.hk.

• Jin Zhang is with the Research Institute of Trustworthy Autonomous Sys-
tems and the Department of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen, China and Peng Cheng
Laboratory, Shenzhen, China. E-mail: zhangj4@sustech.edu.cn.

• Z. Xiao and Z. Li are with the Department of Computer Science, City Uni-
versity of Hong Kong, Hong Kong, China. E-mail: zxian4@cityu.edu.hk,
zhenjiang.li@cityu.edu.hk.

• The corresponding authors are Zhenjiang Li and Jin Zhang.

in these applications, an emerging and important topic is
how to maintain good performance when deploying WHAR
systems in unseen conditions after training [10], which
includes 1) new users with different behavior habits, 2) new
environments with different room layouts and locations of
transceivers and 3) even new classes of activities or gestures
never appeared in the training process.

Recent research finds that an effective solution to the
unseen condition is to employ meta-learning [10], leverag-
ing its powerful capability for condition generalization. The
main idea is to organize the training dataset into groups,
called tasks. Each task contains only a small number of
data samples from several activities of a subset of users
and environments in the training dataset. Therefore, the
sensing conditions involved in different tasks are different.
The data samples of each task are further divided into two
sets: the support set and the query set. We can then train the
WHAR model on a task’s support set and validate it on its
query set. After one task is trained, the data samples of the
other task are from a new condition to the current model.
Therefore, different tasks simulate different conditions, and
training essentially rehearses how to use few samples from
a certain condition (in the support set) to update the model
so that it can perform well under this condition (in the
corresponding query set). With this capability, for any new
condition after training, people only need to collect few
labeled data samples (shots) from it to fine-tune the model,
and the model can quickly adapt to the condition. However,
no matter how the number of data shots is reduced [11], the
model always needs to be fine-tuned, which greatly hinders
the widespread adoption of WHAR in practice, since fine-
tuning the model is difficult to automate, requires expertise
in deep learning, and demands several times the hardware

resources compared to the inference process.
To push the design of WHAR systems a step further,

we wonder: is it possible to quickly adapt to unseen conditions
without model fine-tuning? To this end, we first delve into
why fine-tuning cannot be removed from existing methods.
Existing WHAR systems introduce advanced models to ex-
plore and characterize complex mapping relationships from
data samples to corresponding labels. They are good at min-
ing the internal features of data samples to discover such
relationships, but data samples from different conditions
follow different feature distributions, resulting in distinct
data-to-label mappings. Thus, under unseen conditions, the
previously learned mapping relationship will be invalid,
and the model has to be fine-tuned to correct it. Although
meta-learning can effectively reduce the adaption overhead,
the fine-tuning process is always required in existing meth-
ods.

To avoid model fine-tuning, we revisit the model design
from a different angle. The data samples of the support
set and the query set of each task come from the same
sensing condition and have similar feature distributions.
Therefore, these data samples of the same activity class are
more similar to each other in a certain latent space than
data samples of other classes. Since WHAR is essentially a
classification problem, with this observation, we can come
up with suitable metrics to directly measure the similarity
of data samples and design a clustering-like model — for
each sample in the query set, we check which data sample
in the support set has the highest similarity and use its label
as the classification result. After training, we also collect few
labeled data samples for any new unseen condition in real
use, but we only use them to form a reference set (similar
to the support set in training), not for model fine-tuning. We
then treat the actual sensing data as a test set (similar to the
query set). Data samples in the reference set will input into
our model, and through similarity comparison, the model
will output the label of the sample in the reference set that
is most similar to the sample in the test set as the recognition
result.

The advantage of our method is that in unseen condi-
tions, although the data-to-label mapping would change,
the data samples from the reference and test sets still
come from the same condition. Hence, the above-mentioned
similarity observation between data samples can still hold
(with our new design), which provides the opportunity to
apply the model directly to new conditions without fine-
tuning. The main insight of our design is that meta-learning
already ensures the data, which the model needs to use in
the respective phases of training and testing, come from
the same conditions. Our method explicitly exploits this
phenomenon in its design. It attempts to directly employ
this inherently invariant property of the data to bypass
updating the model, i.e., fine-tuning, instead of focusing
on the different data-to-label mappings under different
conditions, which is essentially a more complex problem,
but not necessary for WHAR. We note that our method is
not intended to replace the mainstream model design of
learning data-to-label mappings, while it just fits better with
WHAR to handle unseen conditions.

However, our system cannot be achieved using tradi-
tional clustering methods due to two unique challenges.

First, how to effectively measure data similarity to distin-
guish different types of data samples? Metrics used in tra-
ditional clustering methods, such as Euclidean distance and
cosine distance, cannot robustly distinguish data samples
from various wireless sensing signals. We need a new and
specialized design to transform the sensing data into a latent
space suitable for our design principle, so that an effective
and robust data similarity measure can be achieved. Second,
how to efficiently support new classes? Adding new classes
(activities) to a model often requires changes to the model
structure, such as fully connected layers, which necessitates
fine-tuning the model. However, we want the system to
allow new classes to be added, but still avoid model fine-
tuning.

To address these challenges, we propose a design, called
RoMF. In RoMF, we formulate the learning of WHAR data
similarity as a feature propagation problem and utilize
graph neural network (GNN) [12] to find accurate and
reliable metrics to evaluate the similarity between wireless
signals through novel GNN node construction and updat-
ing. We further integrate the GNN model into a meta-
learning framework to “teach” the model how to compare.
Similar to existing meta-learning, we divide the training
data from each task into a support set and a query set with
labeled data. By building GNN nodes, we explicitly combine
label information with data in the support set, making the
model learn a dedicated metric that once two samples have
different labels, the distance between them should be large.
For the scenario of adding new classes, we further propose a
novel decompose-and-vote mechanism for our GNN model,
so that new activity classes can be added freely without
model fine-tuning.

We develop RoMF with a unified input format to easily
work with various wireless sensing signals. We experiment
with frequency-modulated continuous-wave (FMCW), Wi-
Fi and acoustic sensing signals. The evaluation involves a
total of 73 users (40 FMCW users, 17 Wi-Fi users and 16
acoustic users) with 44 daily activities in 27 different envi-
ronments. We compare RoMF with the state-of-the-art meth-
ods RF-Net [11] and OneFi [13] in three scenarios, including
1) new environments only, 2) new environments and users,
and 3) new environments, users and classes, where the
number of new classes is up to 10. RoMF is trained only
using several activity data of a subset of users in two envi-
ronments, while it can perform activity recognition directly
in these unseen condition scenarios without fine-tuning the
model and achieve 84.7–95.3% accuracy, outperforming RF-
Net and OneFi by 2.2–73.1%. We will open source all RoMF
code to facilitate future research in this field. In summary,
this paper makes the following contributions:

• We design RoMF to adapt the WHAR system to
new conditions without fine-tuning the model. At
the same time, it retains good accuracy and few-shot
adaptability. The design of RoMF can significantly
improve the real-world applicability of this sensing
technology.

• We propose a novel GNN-based meta-learning
framework to achieve the goal of avoiding model
fine-tuning through a novel GNN design and an
effective mechanism to support the recognition of

2

new activities.
• We develop a prototype of RoMF and conduct ex-

tensive real-world experiments. The results show the
efficacy of our design under various unseen condi-
tions.

2 BACKGROUND

2.1 Unseen Sensing Conditions
A major obstacle limiting WHAR’s widespread use is that
the feature distribution of wireless sensing signals can
change significantly under various unseen sensing condi-
tions:

• i) New environments: Different room layouts and
sensing device locations/orientations can lead to dif-
ferences in sensing signals for the same activity [14],
[15]. For example, a room with dense furniture may
have more multipath reflections during sensing.

• ii) New users: Different behavioral habits and phys-
ical characteristics of users also make the wireless
signals reflected by the same activity different [16].
For example, users often have different patterns for
“walking” in terms of stride length and speed. These
differences are difficult to characterize in advance.

• iii) New activity classes: New activities not included
in the training data set [13] can be added to the
existing WHAR system to enrich its functionality.

Existing solution. However, training a new model for each
condition is impractical due to the large amount of con-
ditions and the heavy overhead of labeled data collection.
Recent research found an effective solution [10], which em-
ploys few-shot learning to quickly adapt the WHAR model
to new conditions in two steps:

Step-1) Few-shot data collection. For the new condition of
deploying the WHAR system after training, we can first
collect some sensing data samples from it and annotate them
with activity labels. Recent studies have found that very few
shots (e.g., 1–3) will be enough with meta-learning [17]. This
minimal data collection does not introduce any additional
burden, as data collection is a fundamental requirement in
any WHAR systems.

Step-2) Model fine-tuning. We then use these few shots of
data samples to fine-tune the model for adaptation to new
conditions. However, fine-tuning requires deep learning
expertise and is difficult to automate. Recent research points
out that fine-tuning is a limitation of such designs [18].

Our objective. In this paper, we still follow step-1) using few
shots of labeled data collected under the target new sensing
condition (to build the reference set), but avoid model fine-
tuning in step-2). For WHAR, since the label is just the name
of each activity, the collection of a reference set and its label-
ing can be developed into an easy-to-operate system setup
routine, which does not bring much overhead. In RoMF, we
focus on avoiding model fine-tuning in the second step to
improve the applicability of WHAR in practice.

2.2 Modeling Sensing Signals
RoMF can support a variety of wireless sensing signals,
and we take three popular signals of FMCW, Wi-Fi, and

FM
C

W
W

i-
Fi

A
co

u
st

ic

(a)

(b)

(c)

Raw Signals Sensing Signatures

Fig. 1: Illustration of RoMF’s input from different sensing
signals for a same push-pull activity. As signals characterize
activities differently, similar to existing methods, we will
train different versions of RoMF with the same model struc-
ture but different parameters when using different types of
sensing signals.

acoustic sound as examples to explain its design. For the
convenience of development, we unify the input format of
different sensing signals into a two-dimensional (2D) matrix
I to the system, which can be regarded as a 2D image. Below,
we detail the preprocessing of different sensing signals.

FMCW. FMCW radars emit a sinusoidal signal called a
chirp whose frequency increases linearly in a wide fre-
quency band B from a starting frequency f0 over a time
T [19]. Once the chirp signal is reflected from the sensing
target and received by the radar, the radar generates an
intermediate frequency (IF) signal of constant frequency
equal to the frequency difference of the transmitted and
received chirps as follows:

yf (t) = A× ej2π(f0τ−
Bτ2

2T +Bτt
T), (1)

where A is the amplitude and τ is the round-trip time delay
of the signal between the radar and the sensing target.
The IF signal is the signal used by the FMCW radar to
measure the distance, velocity and angle of the sensing
target, and it is usually also the input source of many
FMCW-based WHAR methods [20], [21]. Specifically, the
IF signal is transformed into a 2D velocity-time map by
short-time Fourier transform (STFT), called micro-Doppler
spectrum [22], which is the input matrix of RoMF with
FMCW. Figure 1(a) shows an example of this spectrum for a
push-pull activity. In RoMF, the dimension of each spectrum
is 128 × 512 for FMCW.

Wi-Fi. For Wi-Fi, channel state information (CSI) is widely
used for wireless sensing [23]. Denoting the number of
subcarriers as C , the CSI component in the c-th subcarrier
is:

yw(fc, t) =
∑K

k=1
Ak(t)× e−j2πfcτkt, (2)

where K is the number of multipaths, Ak is the amplitude
and τk is the propagation delay. Both the original CSI and
other variants (such as micro-Doppler spectrum) are used in
existing Wi-Fi based WHAR designs [24], [25], [26]. Similar
to FMCW, we also convert CSI to micro-Doppler spectrum
in RoMF with dimension 121 × 512. Figure 1(b) shows an
example spectrum from Wi-Fi for the same activity.

Acoustic sounds. In addition to radio frequency signals,
acoustic sounds are also commonly used for sensing and

3

recognition [27], [28], since mobile devices can easily gen-
erate sounds that are inaudible to the human ear (without
disturbing us) through device speakers [29]. Sounds can be
generated in different forms, and we use a continuous wave
signal with a constant frequency f [30] (e.g., f = 17 KHz),
which can be expressed as r(t) = 2Acos(2πft − 2π2d/v −
θp), where v is the sound speed, θp is the initial phase,
and d the distance from the device to the target. The re-
ceived reflected signal is firstly multiplied by cos(2πft) and
−sin(2πft) respectively to generate the sensing signal [30]:

ya(t) = A× e−j(4πfd/v+θp), (3)

where A is the amplitude. For reliable sensing, we transmit
acoustic signals at multiple frequencies, separated by a fre-
quency interval (e.g., 350 Hz), and then perform an Inverse
Discrete Fourier Transform (IDFT) for Eq. (3) to obtain the
distance spectrum as model input, which is 128 × 512 in
RoMF. Figure 1(c) shows an example for the same activity.

2.3 Meta-learning Basics

One of human intelligence is to learn from existing tasks
and quickly understand new tasks with only few labeled
observations. For example, knowing the characteristics of a
horse can help to learn the characteristics of other related
animals such as zebras. Furthermore, even if the child did
not know the precise definition or characteristics of a zebra,
after viewing several pictures of zebras, the child was able to
pick out pictures of zebras from other animals such as dogs,
cats, and elephants. Meta-learning aims to imitate such
human intelligence, and its key ideas are twofold: 1) learn
knowledge from environments (similar to different sensing
conditions in WHAR) in training datasets with rich data,
and 2) apply accumulated knowledge to new environments
for quick adaptation with few labeled samples.

Meta-learning organizes the training process into a se-
quence of tasks and focuses on classifying activities under
the same condition each time. For each task, we select only
a small amount of data belonging to a subset of all sens-
ing conditions (including environment, user and activity
class) in the training dataset, and the selected data and its
conditions are different for each task. Assuming we choose
four samples for each of five activities in the task, we split
them into a support set (three samples per activity) and
a query set (one sample per activity). Since all these data
samples are labeled, meta-learning will train the model on
the support set, test performance on the query set, and use
the test results to update the model. For the next task, the
combination of activities, environments, and users will be
different.

The rationale behind this arrangement is to rehearse the
few-shot adaptation under unseen conditions, i.e., each task
is a new condition for the other tasks. The data in the
support set simulates data samples collected from a real new
condition in the future deployment (i.e., the reference set),
while the data in the query set simulates the actual sensing
data from this new condition for recognition (i.e., the test
set). By repeating this process, the training aims to optimize
the model parameters θ by:

θ⋆ = argmin
θ

∑
Ti

L(DTi
; θ), (4)

Meta-
Training

Sensing
Signatures

Classification
Result

Decompose -
and-Vote

GNN Model
Vertex

Construction

 Edge
Operation

Vertex
Operation

Test Set

Reference Set
RoMF

Training Flow

Task
Generation

Query Set
Support Set

 Inference Flow

Fig. 2: Overview of the RoMF architecture.

where L is the loss function and DTi
is the data of the

support set and the query set for task Ti. In RoMF, we
also employ meta-learning to preserve this adaptability, so
that few-shot reference data samples can directly guide our
proposed model for correct recognition without model fine-
tuning.

3 SYSTEM DESIGN

Figure 2 shows an overview of the RoMF design. We
customize a meta-learning framework to train our GNN
based recognition model. The meta-learning takes the 2D
sensing signatures (§2.2) converted from sensing signals in
the training dataset as input, and further divides them into a
support set and a query set for each task (§3.3). RoMF model
contains efficient elements and operations (§3.1) to learn
data similarity. It also exploits a decompose-and-vote block
(§3.2) to manage the model structure to support adding new
activities for actual deployment. When RoMF is deployed
after training, few shots of labeled reference data samples
are collected during setup, which will be used as model
input. Then, RoMF can accept the sensing signal and directly
perform activity recognition with high accuracy (§3.3). In
the following, we describe the design of each module.

3.1 GNN-based Recognition Model
In RoMF, our goal is to recognize activities by finding
reliable distance measures and comparing similarities be-
tween data samples. To mine data similarity, graph neural
network (GNN) is an advanced method in the field of
machine learning [31], built on the concept of vertices and
edges. Vertices can be designed to encode information related
to data samples, e.g., to express data features, and edges
are associated with weights that measure the similarity
of two vertices connected by the edge. Unlike traditional
clustering, vertices can be carefully constructed for better
feature representation, and the features of two vertices can
be compared by an advanced neural network to compute
weights to explore better metrics for more reliable similarity
measurements. Therefore, we design our recognition model
in RoMF using GNN. In §4.2, our experiments show that
using GNN can lead to ∼40% improvements than using
traditional clustering algorithms. However, GNN is just a
framework, and we need to instantiate every component
and operation for WHAR.

Figure 3 shows the high-level idea of our GNN model
design. We first construct vertices for each data sample i,
where the number of vertices is equal to the total number
of data samples in support set and query set in each meta-
learning task (§3.3). Then we introduce two operations, edge

4

operation and vertex operation, to update the weight of each
edge and the content of each vertex during training, so that
vertices corresponding to the same class are measured closer
to each other (otherwise they will be farther away from
each other). Finally, for the convergent vertex of the data
sample in the query set, we use the label of the most similar
sample in the support set as its recognition result, and refer
to the original label in the query set of this data sample
to minimize a cross entropy loss, thus realizing supervised
training (§3.3). Below we introduce our vertex construction
design, and the edge and vertex operations.

3.1.1 Vertex construction

A graph can be expressed as G = (V,E), where V is its
vertices and E is a matrix consisting all edges with the size
of |V | × |V |. We first construct all the vertices vi ∈ V for the
GNN model. As mentioned above, each vertex is intended
to accommodate the features of the corresponding data sam-
ple. For each sample in the support set, in addition to the
features extracted from the data sample itself, we propose to
also encode its label information into the vertices as part of
the overall feature representation, since support set samples
will act as anchors for query set samples to compare with.
Thus, the label information encoded in vertices can serve
as a strong indicator to teach the model how to update
the content of each vertex during training, making vertices
belonging to the same class more similar. Therefore, we use
the sensing signature xi of the data sample i and its label yi
to construct a (type-one) vertex vi:

Type-one vertex: vi =< r(xi), o(yi) >, (5)

where xi is processed by a small ResNet (only ten layers
for lightweight development), denoted as r(·), to extract
preliminary data features, and the label yi is processed by
the one-hot encoding processing function o(·) to represent
class variables as numeric values [32]. Then, r(xi) and o(yi)
are concatenated to form a vertex in the form of an one-
dimensional vector < r(xi), o(yi) >, as shown in Figure 3.

However, type-one vertex cannot be used to construct
vertices for data samples from the query set, because we
need to use their labels to evaluate the loss and train the
model. To overcome this issue, for the data sample j in
the query set, we replace o(yj) in Eq. (5) by a uniform
distribution over all activity classes to generate a type-two
vertex as follows:

Type-two vertex: vj =< r(xj),
1

k
× Ik >, (6)

where k is the number of classes that the GNN model recog-
nizes and Ik is an identity matrix of size k. The rationale is
that we pretend not to know the activity class of each data
sample in the query set. Therefore, their likelihood to each
class is regarded to be the same initially. Later on, through
training, their vertex vectors will be adjusted to become
similar to the vertices from the support set for the same
activity.

3.1.2 Graph Operations

After the vertices are constructed, we need to calculate the
similarity between vertices and record it in the weights of

Vertex Construction
Type-one:

o(yi)r(xi)

1/k × Ikr(xj)

Type-two:

GNN Graph

Vertices (V)(xi, yi)

xj

Edges (E)Edge
Operation

Vertex
Operation

…

…

(Weights)

˹0.1 0.7 … 0.2
 0.2 0.5 … 0.1

 0.3 0.3 ... 0.3˼

…

Fig. 3: Vertices and edges of the GNN graph.

the edges between the vertices. So we introduce an edge
operation to compute edge weights.

1) Edge operation. Given two vertices vi and vj , we first
compute the element-wise difference ∆vij = |vi−vj |, where
∆vij is also a one-dimensional vector with the same length
as vi or vj , and each of its element records the difference
between the corresponding elements between vi and vj .
We then leverage a neural network to add non-linearity on
∆vij to explore a distance metric. Specifically, we stack all
∆vij together (from all vertex pairs) to form a virtual image
{∆vij}. To extract local structural information from vertices,
we then employ a convolution block fc(·) to transfer {∆vij}
into a latent space and adopt an activation function σ(·)
(e.g., Leaky ReLU) to generate the distance metric. Therefore,
given the set of all element-wise differences {∆vij}, the set
of weights {wij} for all pair of vertices vi and vj in the
graph can be obtained at the same time by the following
edge operation:

{wij} = σ(fc({∆vij})), (7)

where ∆vij is the difference between vi and vj when i ̸= j
and ∆vij = 0 when i equals to j to skip computing
similarity to vertices themselves. Given a graph, applying
the edge operation computes the weights wij for all edges
eij in the adjacency matrix E in Figure 3. In general, the
smaller wij , the higher the similarity between vertices vi
and vj .

2) Vertex operation. After vertices are constructed, vertices
of the same class may not have similar vertex values,
especially for type-one and type-two vertices of the same
class (since the latter one does not encode the actual label
information). Hence, we need to update each vertex further
so that eventually vertices of the same activity tend to be
similar, while different activities end up with very different
values.

In GNNs, vertex updates are usually performed by “av-
eraging” the values of its neighbors [33], and we further
consider the weight of each edge for weighted average,
so that when the weight of the edge is relatively small,
the values of the two vertices become closer. Therefore, we
superimpose the current weights (similarities) on all vertices
E×V and add them to all current vertices. Then, we design
the following vertex operations to update vertices:

V ′ = MLP(E × V) + V, (8)

where MLP(·) is a multi-layer perceptron (MLP). This opera-
tion essentially propagates and updates feature information
among all vertices with the help of edges.

3.1.3 GNN model
From the initial graph so far, we can obtain the updated
graph by applying edge and vertex operations, as described

5

GNN Model

……

Softmax

1st Block

V 0 V 1

Edge
Operator

Vertex
Operator

E0 2nd Block

Edge
Operator

Vertex
Operator

E1

V 2 V Final

Fig. 4: GNN model composed of GNN blocks.

above. We combine them together as one GNN block, and
connect multiple GNN blocks to build a complete GNN
model to increase the depth of the model for better per-
formance. As our evaluation in §4 reveals, good recognition
performance can be achieved as long as the number of GNN
blocks is not particularly small, such as 1 or 3, and we
employ five blocks in our current development.

1) Loss function. To perform recognition, we add a leaky
ReLU [34] as activation function and a softmax layer at the
end of the last GNN block, as shown in Figure 4. In this
way, we can perform the backward propagation algorithm
to update and train the model by calculating the loss value
of the predicted data sample in the query set, that is, each
data sample in the query set has a label, which we use to
calculate the loss without encoding it to vertices in the graph
(loss cannot be computed otherwise). The cross-entropy loss
function is:

L(θ) = ŷi × logP (ŷi|xi),

where ŷi is the one-hot encoding of the predicted label yi
and θ represents the parameters of 1) ResNet r(·) in the ver-
tex construction, 2) the neural networks in edge and vertex
operations, and 3) the softmax layer. We can then update
the GNN model by gradient descent θ ← θ − α × ∇L(θ),
where α is the learning rate. When the training of a task
converges, we can keep all the parameters in θ, but construct
new vertices for the next task to continue training θ.

2) Model deployment. After the GNN model is trained
(in §3.3), we can collect the same number of labeled data
samples as the support set to form a reference set under the
target condition, and organize each actual (to be recognized)
sensing data as a test set. Then, the reference set samples and
test set samples are used to construct type-one and type-two
vertices, respectively. For each test set sample, our model
can judge which reference data sample is most similar to
it, and use this reference sample’s label as the recognition
result.

Our GNN model can work on new sensing conditions
without fine-tuning for two reasons. First, meta-learning en-
sures that the data that the model needs to use at each stage
of training (i.e., support set and query set) and testing (i.e.,
reference set and test set) come from the same conditions.
Under the same sensing condition, data samples with the
same label should be similar, and data samples with differ-
ent labels should be different. Our method explicitly exploits
this phenomenon and leverages this inherent invariance
of data by directly comparing data similarities. Second, to
make this comparison more reliable, we further encode the
label information directly into the vertex construction as
prior knowledge to effectively guide the model training,
so that the model can effectively reveal and utilize this
phenomenon under different sensing conditions, as shown

Condition A Condition B Condition C

Fig. 5: Visualization for features of data samples of the same
class in RoMF, which can be clearly distinguished under
different sensing conditions.

in Figure 5.

3.2 Support for More Activity Classes
Before describing the details of how to train our GNN model
using meta-learning, we first address a critical and practical
issue related to the structural design of the GNN model.
Assume that the number of activities to be recognized by the
GNN model during training is k. If the number of activity
classes under the new condition is K , e.g., K > k, it means
that more vertices need to be constructed for additional
reference data samples (corresponding to these additional
action classes), which requires changing the structure of the
GNN model to accommodate these extra vertices. If the
model structure changes, it must be updated before it can
be used. To avoid modification of model in this case, we
devise a decompose-and-vote block in RoMF.

3.2.1 Decompose-and-vote block
We introduce the design by taking the case where more
classes need to be supported (i.e., K > k), which can be
extended to the case where K < k.

1) Design idea. Our main idea is to decompose the K-
class recognition problem into a series of smaller k-class
subproblems. Since each subproblem still targets k classes,
which is the same number of classes as in training, we only
need to use the trained k-class GNN model multiple times
without modifying the structure of the model.1 Therefore,
we check all combinations (subproblems) of choosing k
classes from K and infer the most likely class by examining
the classification results of all

(K
k

)
subproblems via a voting

mechanism.
Since data samples of the same class are similar to

each other, our GNN model can reliably produce correct
recognition results for the combinations, containing the class
that the data sample to be recognized belongs to. On the
contrary, if the actual class is not covered by a combination,
the output will be an arbitrary class in the reference set, and
the result will not focus on any class. Hence, we check all(K
k

)
combinations for voting, and the correct class wins by

accumulating votes for all combinations containing it.
2) Solution. We define a vector R to record the voting

results, where R consists of K elements {Rl}Kl=1, and each

1. Note that after the problem is decomposed in this way, although
our GNN model needs to process different k activities each time, it
can work normally because the meta-learning training in §3.3 takes
this factor into account, that is, the classes involved in each task
may themselves be different. In addition, our vertex design (directly
encoding label information) further strengthens the model’s ability to
distinguish different classes.

6

…

+ ?

{l1,l2,l3}

+ ?

{l1,l2,l4}

GNN

+ ?

{lK-2,lK-1,lK}

…l1 l2 l3 l4

Reference
Set

Combi-
nations

lK-2 lK-1 lK

l1 wins a vote l4 wins a vote lK-1 wins a vote

Votes

GNN GNN

li Activity i ? Test sampleReference sample

Fig. 6: Decompose-and-vote block when k = 3.

element Rl is initialized to zero. For each combination, we
select all data samples in the reference set whose classes
are covered by the k classes of that combination. We then
perform classification by constructing type-one vertices for
these samples and type-two vertex for the data sample in the
test set. For the output class, we increment the correspond-
ing element in R by one (i.e., one vote). When we repeat this
process for all

(K
k

)
combinations, as shown in Figure 6, the

class l⋆ with the most votes is the recognition result of the
sensing data sample in the test set:

l⋆ = argmax
l
{Rl}. (9)

3) Early stopping. Since only combinations covering the
class of the test set data sample can accumulate correct
votes, we further propose an early stopping mechanism to
reduce the execution overhead. Specifically, after running
the voting mechanism for several combinations selected
randomly, if we observe that some classes get much more
votes than others, then they are more likely to be the recog-
nition result, and we can focus on the combinations relate
to these high-vote classes only to avoid many unnecessary
computations. In principle, a class can receive no more
than

(K−1
k−1

)
votes. Therefore, when any element in R gets

sufficient votes, where we empirically choose half of that
maximum value, we can pick the top-n classes with the most
votes. Then we clear all the votes and recount from scratch
by checking all the combinations that meet the following
criteria: each combination encompasses all top-n classes
(k ≥ n), or each member within the combination belongs
to the top-n classes (k < n). As shown in the evaluation
(§4), in the case of a small n (e.g., 3), the early stopping can
reduce the computation amount by about 36% with almost
no degradation in recognition performance.

4) Execution overhead. Leveraging the lightweight struc-
ture of GNN and our proposed early stopping mechanism,
the overall execution overhead remains moderate, even as
the number of combinations becomes large. Figure 7 shows
the latency of RoMF to complete each recognition with
different number of classes K , while maintaining the k = 2.
It is evident that bigger K brings more combinations to
examine, but the overall latency remains under 100 ms when
K = 22. The early stopping mechanism can eliminates
approximately 57% unnecessary computations.

3.2.2 Extension for fewer classes
In some cases, the number of classes under the new condi-
tion is reduced (K < k). This case can be supported during
training by setting the value of k to be small, e.g., k = 3.

Fig. 7: System latency when the number of classes K
changes (keeping k = 2).

Specifically, assuming that there are 10 classes of activities
in the training dataset, we only need to train a 3-class GNN
network, which is still able to recognize 10 classes through
the decompose-and-vote block. In actual deployment, even
if the number of activity classes under new conditions is
reduced, for example, to 8 classes, we only need to modify
K to 8. Therefore, our model can use the decompose-and-
vote block as long as the number of classes is not less than
k. Since k is small enough (e.g., k = 3), it can meet most
practical deployment requirements.

Final GNN configuration. While smaller k will result
in more combinations, the GNN model itself will also be
smaller, recognizing fewer classes each time, without in-
creasing the overall inference time. According to the eval-
uation in §4, when k = 3, the inference time for an activity
among eight classes can be finished within 80 ms on a
desktop. Due to this capability, we set k small in RoMF,
e.g., k = 3 by default as studied in §4, which can support
different numbers of activities flexibly after deployment
without model fine-tuning.

3.3 Meta-Learning Framework

Unlike traditional supervised training, meta-learning gen-
erates a series of tasks to train the model. For each task, it
utilizes a subset of the training dataset under certain condi-
tions to form the support set and the query set. In WHAR,
we take three important dimensions of environment, user,
and activity as conditions for generating training tasks.

3.3.1 Task requirements
To train our GNN model, we introduce the following re-
quirements to generate tasks for RoMF. We first randomly
select a set of environment combinations, each of which
is included in the training dataset. We denote all these
environment combinations as Et, where Et ⊆ E and E
denotes all possible combinations of environments in the
training dataset. Similarly, we further select a set of activity
combinations Kt, where Kt ⊆ K and K contains all possible
combinations of activities involved in the training dataset.
So the first requirement to generate each task t is:

Criterion 1: Et ⊆ E and Kt ⊆ K.

Then, for each activity satisfying the first criterion, we
randomly select data samples from different users (to cover
diversity due to different users), and split them into a
support set SS

t (where mS data samples) and a query set SQ
t

(with mQ data samples) following the second requirement:

Criterion 2: SS
t ∩ SQ

t = ∅ and mS +mQ = |V |,

7

where there is no overlap between SS
t and SQ

t to ensure
that the query set can effectively rehearse the learning per-
formance, and the number of samples in both sets is equal to
the number of vertices (|V |) of the GNN graph G = (V,E).
Based on these requirements, the support set and query set
of each task face the same environments and activities but
different users. This means that even within a single task,
the model encounter different conditions, unlike traditional
meta-learning methods. In real-world applications, users
who contribute the reference set may differ from the actual
users. Generating tasks in this way allows us to simulate
this scenario.

3.3.2 Task generation

Following the above two criteria, we can generate various
tasks to train the model by varying Et, Kt, and the data
samples in SS

t and SQ
t . Note that even if Et and Kt are the

same for two tasks, these tasks are still good for helping the
model distinguish user diversity because the data samples
are randomly selected from different users.

Finally, for each task, the number of samples in the
support set (mS) and query set (mQ) is determined as
follows:

1) Support set size mS . Since our model recognizes k
(e.g., 3) classes each time, mS is mS = k × a, where a
is the number of data samples selected for each class. For
training itself, there are no requirements on a. However, if
we consider how the model is used after training, we can
set a to be the same as the number of few-shot reference
samples collected from the new condition. We set a = 3 by
default in RoMF.

2) Test set size mQ. The training itself has no special
requirements on mQ, and we mainly consider its setting in
practice. After the GNN model is trained and deployed, the
data samples in the test set are similar to the data samples
in the query set during training. For each to-be-recognized
data sample, the model should output a recognition result.
Thus, we set mQ = 1 for each recognition in the current
design.

3.3.3 Summary

Finally, we walk through an example of how to set up our
GNN model after training (using default system param-
eters). Assume that the number of activity classes in the
training dataset is 10. We only train one GNN model for 3-
class recognition. If the number of activities for a new user
to be recognized in the new target environment is 12, we
collect 3 data samples for each of the 12 activities to build
a reference set. Later, when RoMF starts to recognize activ-
ities, the sensing signal is converted the sensing signature
in the test set. Then RoMF runs the GNN model multiple
times, each time for one of

(12
3

)
combinations, following the

decompose-and-vote block. For each combination, 9 type-
one vertices and 1 type-two vertex are generated to run the
model. RoMF uses the result that has accumulated the most
votes. After the current input is recognized, it is removed
from the test set and the model waits for the next input.

Lab StairwellPantry
Furnished

Room Desk
Conference

Room

FMCW Wi-Fi Acoustic

(b)

(a)

Tx

Rx 1&2

TxRx
Tx

Rx

Fig. 8: (a) Our testbed built on commercial FMCW, Wi-Fi
and acoustic devices. (b) Illustration of some of the sensing
environments involved in our experiments.

4 EVALUATION

4.1 Implementation

4.1.1 Testbeds and datasets
To thoroughly evaluate RoMF, we experiment with three
popular wireless sensing signals, FMCW, Wi-Fi and acoustic
waves. Further considering the generality of the design,
we conduct experiments on both our testbeds and public
datasets. Specifically, we built two testbeds for FMCW and
acoustic sensing using commercial devices, as shown in
Figure 8(a). For Wi-Fi, we mainly use the popular dataset
Widar3.0 [35] for evaluation, and we also test RoMF (trained
on Widar3.0) on our own Wi-Fi testbed. For all datasets,
we ensure that the number of samples in each activity
class is the same. This approach prevents overfitting due
to data bias during model training and help the evaluation
metric we use, accuracy, fairly represent the classification
results across all categories. We detail below the setup and
data collection process for all testbeds, which were ethically
approved by the institute.

FMCW. We use a TI IWR1443BOOST radar to collect FMCW
sensing data. The radar transmits 20 frames per second, each
frame containing 128 chirps from the Tx antenna. In our
experiments, for each chirp, the start frequency, bandwidth,
and chirp duration are set to 77 GHz, 3.3 GHz, and 28 µs,
respectively. We recruit 40 users to perform 12 activities in 11
different environments. These activities include: 1) jumping
forward, 2) walking, 3) running, 4) squatting, 5) throwing,
6) walking in place, 7) running in place, 8) shaking hands, 9)
chatting, 10) raising one hand, 11) using phone, and 12) push
and pull. The environments are typical office and every-
day life environments involving furniture and occlusions.
Figure 8(b) shows some examples. For each activity, each
user performed five times in each environment. After data
collection, we randomly select the data of 20 users in 2
environments as the training dataset, and the data of the
rest (new) 20 users are used for evaluation.

In addition, we further ask these 20 new users to a new
environment (different from the above 11 environments)
and perform 10 new activities, including 13) clapping, 14)
raising both hands, 15) bowing, 16) lunging, 17) lying, 18)
waving, 19) lifting one leg, 20) chatting, 21) sitting, and 22)
drinking. Each activity is also performed five times. This set
of data is used for evaluations involving new activities. Data
collection for the following two signals follows a similar
process.

Wi-Fi. For Wi-Fi, we mainly evaluate RoMF using the pop-
ular public dataset Widar3.0 [35]. It collects Wi-Fi Channel
State Information (CSI) from Intel 5300 cards running at

8

5.825 GHz with a bandwidth of 20 MHz at a transmission
rate of 1000 packets per sec. Widar3.0 contains sensing data
of 22 everyday gestures/activities performed by 17 users
in three environments. We randomly select 12 activity data
of 4 users in 2 environments as the training dataset, and
the rest are used for evaluation. For each activity, we also
collect five samples for each user. In addition, we further
collect data on the remaining 10 (=22 − 12) new activities
of these 13 (=17 − 4) users (whose data is not present in
the training dataset) in the last environment for evaluation
involving new activities.

Acoustic. We use a pair of speaker-microphone to send and
receive acoustic sensing data. Similar to existing acoustic
sensing designs [30], the sender transmits continuous-wave
sound at a constant frequency (17 kHz). For reliable sens-
ing, the sender transmits at 16 different frequencies with
an interval of 350 Hz. We repeat the first 12 gestures or
activities in Widar3.0 with acoustic sensing on 16 users in
11 environments. For each activity, each user performs five
times in each environment. After the data collection, we
randomly select the data of 8 users in 2 environments as the
training dataset, and the data of the rest 8 (new) users are
used for evaluation. In addition, we further ask these 8 new
users to a new environment to perform the remaining 10
activities in Widar3.0. This set of data is used for evaluations
involving new activities under acoustic sensing.

Total Training Env Env+Usr Env+Usr+Act
FMCW 12/40/22 2/20/12 10/20/12 10/20/12 1/20/10

WiFi 3/17/22 2/4/12 1/4/12 1/6/12 1/7/10
Acoustic 12/16/22 2/8/12 10/8/12 10/8/12 1/8/10

TABLE 1: Dataset partitioning under different unseen con-
ditions (format: environment/user/activity).

4.1.2 Unseen conditions for evaluation
For comprehensive evaluation, we consider the following
settings of conditions:

1) New environments only (Env): Only the environ-
ments are new and not present in training, while users
and activities are seen during training. For example, for
FMCW, we chose 12 activity data of 20 users in 2 envi-
ronments as training dataset. Thus, for the condition with
new environments only, we evaluate with the data of the
same 12 activities from these 20 users in the other 10 new
environments.

2) New environments plus users (Env+Usr): Only the
activities are present in the training dataset, while the en-
vironments and users are new and unseen during training.
Taking FMCW again as an example, we will use 12 activities
of other 20 new users in 10 new environments for evalua-
tion.

3) All factors are new (Env+Usr+Act): Users, envi-
ronments and activities are all new, and their data are
not present in training, e.g., for FMCW, we use the data
from 10 additional activities from 20 new users in the new
environment.

The details of each sensing condition setting are summa-
rized in Table 1. For each unseen condition, we use three
data samples for each activity in the reference set (three-
shot adaptation, similar to existing work [10], [11]), and one
data sample currently to be recognized to form the test set.

(a)

(b)

(c)

FM
C
W

W
i-
Fi

A
co
u
st
ic

Fig. 9: Recognition accuracy comparison of the three meth-
ods.

It is worth to mention that Wi-Fi signals has the issue of
unseen devices, which means different devices will have
unique interference with the signals[36], [37]. To mitigate
the impact of this issue, our setup binds the environment to
specific devices, ensuring that the same environment does
not encounter the problem of device replacement.

4.1.3 Model training
As mentioned in §2.2, we unify the input format of different
sensing signals into a sensing signature in the form of a
2D matrix to facilitate development. In the current system,
the matrix dimensions of FMCW, Wi-Fi, and acoustic are
128 × 512, 121 × 512, and 128 × 512, respectively. For Wi-
Fi, if there are r receivers for recognition, e.g., r = 6 in
Widar3.0, we will concatenate r sensing signatures and feed
the concatenated one into the model. With the decompose-
and-vote mechanism, each GNN model performs k-class
classification with an early-stopping parameter n. We study
how the changes of these two parameters affect performance
(§4.3), and then set k = 3 and n = 3 as default values.
Since different sensing signals have different features, we
use meta-learning to train three versions of RoMF (with the
same model structure but different parameters), one for each
sensing signal, developed using PyTorch [38]. Based on our
task generation design, our GNN model contains 9 type-
one vertices (3 classes × 3 samples per class) and 1 type-two
vertex by default for all three sensing signals.

4.2 Overall Performance

In this evaluation, we compare three WHAR methods be-
low:

• RF-Net: the state-of-the-art WHAR method that uti-
lizes the metric-based meta-learning framework to
fine-tune a pre-trained model for quick adaptation to
unseen conditions [11].

• OneFi: the state-of-the-art Transformer-based
WHAR method that involves dataset augmentation
in the pre-training process to improve the
performance of fine-tuned model for unseen
gestures [13].

• RoMF: the method proposed in this paper.

9

(a)

(b)

(c)

Number of Unseen Activity Classes

FM
C

W
W

i-
Fi

A
co

u
st

ic

Fig. 10: Accuracy when the number of
unseen activities changes.

(a)

(b)

(c)

Number of Shots in the Reference Set

FM
C

W
W

i-
Fi

A
co

u
st

ic

Fig. 11: Impact of number of shots of in
the reference set.

(a)

(b)

Fig. 12: Ablation study on (a) accuracy
and (b) inference latency.

We train all three methods using the same training
dataset presented in Table 1. For each unseen condition set-
ting, we use data samples from the reference set to fine-tune
RF-Net and OneFi before recognizing data samples from the
test set. RoMF just takes the data samples in the reference set
as input and performs recognition directly without any fine-
tuning. When the number of activity classes changes under
new conditions, both baselines require adjusting the net-
work structure during fine-tuning, i.e. the MLP responsible
for classification. In contrast, RoMF can use the Decompose-
and-vote module to avoid any changes to the network
structure.

There are some other recent WHAR designs [39], [40],
[41] that follow the paradigm of fine-tuning a pre-trained
model to handle new sensing conditions. However, they are
mainly limited to certain specific radio frequency signals or
applications. Therefore, we choose RF-Net and OneFi two
more general methods in this evaluation.

Performance comparison. We first investigate the activity
recognition accuracy of these three methods. Figure 9(a)
shows the results using FMCW. When only the environment
is new (“Env”), the accuracy of RF-Net is still limited, e.g.,
65.7%. Through our investigation, we found that its few-
shot adaptation becomes less effective when the number
of activity classes is large. OneFi improves the accuracy to
91.1%, while RoMF can go further to 95.3%. When further
considering new users (“Env+User”), the accuracy of each
method drops slightly, but RoMF can still maintain a high
accuracy of 94.7%. When further including new activities
(“Env+User+Act”), we introduce only four new classes here
and change their number in the next experiment. OneFi
maintains a good accuracy of 84.5% due to its effective learn-
ing, while RoMF can achieve 92.7% accuracy. Figures 9(b-c)
further show the performance of the three methods using
Wi-Fi and acoustic waves with similar conclusions.

Figures 9(b-c) further show the performance of the three
methods using Wi-Fi and acoustic waves, which lead to sim-
ilar conclusions as discussed with FMCW. Overall, RoMF
improves activity recognition accuracy by 27.8–73.1% and
2.2–15.2% compared to RF-Net and OneFi, respectively.

Number of unseen activities. In Figure 10 we perform a
detailed comparison when the number of unseen activities
varies. The purpose of this experiment is to study how many
unseen activity classes can be supported by RoMF without
severe performance drop. Since RF-Net was not specifically
designed for this setup, we only plot the results for OneFi
and RoMF in Figure 10 for clarity. In this experiment,

still under the setting of “Env+User+Act”, we change the
number of new activities from 3 to 10. When the number
is small, the accuracy of the two methods is similar, such
as 75.7–86.0% (OneFi) and 85.3–95.3% (RoMF) when the
number is 3. As this number increases, recognition becomes
more challenging, and the accuracy of both methods starts
to drop. It can be seen that when the number is close to
10, the accuracy rate of OneFi drops to about 57.0–66.6%,
but RoMF can maintain it to 73.9–84.2%. The performance
is improved by 26.5–29.7%. Overall, RoMF can maintain a
moderate performance even if the number of unseen classes
becomes very large.

Ablation study. To gain further insight into the efficacy
of the proposed technical design in RoMF, we conduct an
ablation study by comparing the default version of RoMF
with two other intermediate versions:

• RoMF-w.o.-GNN: This version still follows the over-
all design of RoMF, but replaces GNN with K-means
to compare data similarity.

• RoMF-w.o.-Early: This version removes the early-
stopping mechanism from the default version of
RoMF.

Figure 12(a) shows that when our GNN model is re-
placed by the traditional clustering method, the accuracy
drops significantly. This shows that our proposed GNN
model can derive an effective distance metric that can
reliably compare data similarity, which leads to a 32.2–
44.8% improvement over “RoMF-w.o.-GNN”. On the other
hand, when the early-stopping mechanism is disabled, the
accuracy of “RoMF-w.o.-Early” improves slightly since all
combinations are checked before outputting the recognition
result. From Figure 12(a), it can be seen that due to early
stopping, the accuracy loss is very small, only 1.6–10.1%.
However, Figure 12(b) shows that the inference latency due
to early stopping can be significantly reduced, e.g., by 36.2–
36.6%. This ablation study shows that our technical design
is effective in RoMF.

4.3 Micro-Benchmarks
Next, we further evaluate RoMF in different scenarios.

Number of GNN blocks. We first investigate how the num-
ber of GNN blocks in RoMF affects system performance. To
this end, we change the number of GNN blocks from 1 to 7
for all unseen conditions. Through extensive evaluation in
Figure 13, we can see that when the number of blocks is very

10

(d)

(b)

(c)

FM
C
W

W
i-
Fi

A
co
u
st
ic

Fig. 13: Impact of GNN blocks.

(d)

(e)

(f)

Accuracy (%) Latency (ms)

FM
C

W
W

i-
Fi

A
co

u
st

ic

(a)

(b)

(c)

Fig. 14: Impact of parameter k.

(d)

(e)

(f)

Accuracy (%) Latency (ms)

FM
C

W
W

i-
Fi

A
co

u
st

ic

(a)

(b)

(c)

Fig. 15: Impact of parameter n.

(a)

(b)

(c)

FM
C
W

W
i-
Fi

A
co
u
st
ic

Fig. 16: Impact of different working
distances.

(a)

(b)

(c)

FM
C
W

W
i-
Fi

A
co
u
st
ic

Fig. 17: Impact of different device
orientations.

Fig. 18: Performance across different
Wi-Fi datasets.

small, such as 1 or 3, the neural network has too few layers,
making it insufficiently deep, which results in a relatively
clear drop in accuracy for all cases. After the number of
blocks is increased to 5, the performance is improved and
becomes stable. As suggested by the result in Figure 13, we
adopt five GNN blocks by default in the current RoMF.

Number of shots in the reference set. In this experiment,
we investigate how the number of data samples (for each
activity) in the reference set affects the system performance.
To this end, we examine the performance of RoMF under
the unseen condition setting of “Env+User+Act” by using
one-shot, two-shots and three-shots of data samples in the
reference set. Through extensive evaluation in Figure 11,
we can see that when only one-shot is used, the accuracy
is relatively low for all cases. However, after the number
of shots is increased to two, the performance is improved
significantly. By further increasing the number of shots, the
performance improvement becomes small. Since three-shots
the best performance in all cases in Figure 11, we configure
the number of data samples in the reference set to be three
for each activity.

Impact of decompose-and-vote parameters. With this
mechanism, each GNN-model performs k-class recognition
by checking the top-n classes for early stopping. We then
study how k and n affect system performance.

When k is small, each GNN model recognizes fewer
classes, which we find leads to more reliable recognition re-
sults and takes less time per execution. The downside is that
more combinations need to be checked in the decompose-
and-vote mechanism. In Figure 14(a-c), we show the ac-
curacy of RoMF using different sensing signals when we
change k from 2 to 5. Figure 14(d-f) further plot the cor-
responding inference time to complete each recognition at
different values of k. We can see that smaller k tends to
have better accuracy. On the other hand, smaller k produces

less combinations, each model performs less inference time
(as the model itself becomes simpler), so that Figure 14(d-f)
show that the overall inference time is small.2 Therefore, we
prefer smaller k. Since k = 3 in general is more accurate
than k = 2 across different signals, we default to k = 3 in
RoMF.

In Figure 15, when n increases, both accuracy and infer-
ence time increase accordingly. However, we observe that
after n is greater than 2, the improvement in accuracy is
small, while the increase in inference time is still obvious. In
our current implementation, we choose n = 3 as the default
setting (because we need to run a lot of experiments). In
actual deployment, people can choose a slightly larger n.

Impact of working distance. In this experiment, we in-
vestigate the effect of the working distance of the sensing
device on the recognition performance. The default working
distance between the center of the sensing area and the
transmitter is about 3 m, 1.3 m, and 0.5 m for FMCW,
Wi-Fi, and acoustic sensing, respectively. We further vary
their working distances to study system performance. In
Figure 16, for each set of three bars, the middle bar shows
performance at the default working distance, and the left
and right bars represent the results under reduced and in-
creased working distances, respectively. For Wi-Fi, since the
Widar3.0 dataset has detailed distance information for each
data sample, we can select them according to the distance.
In general, accuracy decreases as distance increases. Because
the acoustic signal decays rapidly with distance, its accuracy
drops more than the other two sensing signals. At longer
working distances, FMCW and Wi-Fi can still achieve 89.3–
95.4% and 83.4–91.0% accuracy in all cases, respectively.

2. In Figure 14(d-f), the total number of classes is eight. The latency
of k = 5 is less than that of k = 4, as the additional latency (per
model execution) due to increased model complexity is limited, but it
has fewer combinations.

11

Signature Generation Inference Overall
FMCW 110 ms 71 ms 181 ms

WiFi 520 ms 74 ms 594 ms
Acoustic 490 ms 71 ms 561 ms

TABLE 2: Latency to complete each activity recognition.

When the working distance is reduced, the accuracy of using
each sensed signal can be further improved. Overall, the
normal working distance of these sensing signals does not
affect WHAR performance.

Impact of device orientation. In this experiment, we further
investigate the effect of device orientation on recognition
performance. For FMCW, direction is measured by the angle
between the transmitting antenna and the user. For the other
two signals, direction is measured by the angle of the user’s
position relative to the transmitter-receiver pair. It can be
seen from Figure 17 that for Wi-Fi and acoustic sensing,
the orientation has little effect on the recognition accuracy.
However, when the orientation angle is large, the accuracy
using FMCW drops significantly. This is due to the inherent
principle of FMCW radar — when the target is not in front
of the radar, the speed and distance changes caused by its
motion become less sensitive and difficult to be captured by
radar [21]. However, within a reasonable orientation angle,
such as within 15◦, the recognition performance is still good.

Different datasets. For Wi-Fi, we have so far mainly evalu-
ated RoMF using the public dataset Widar3.0. In this experi-
ment, we further evaluate the performance of RoMF (trained
on Widar3.0) on our Wi-Fi testbed. We set up our Wi-Fi
testbed according to Widar3.0, and the only difference is that
our testbed has two receivers, while Widar3.0 involves six
receivers. Therefore, we first test RoMF again on Widar3.0
(trained with data from six receivers on Widar3.0), but with
data only from two receivers. Figure 18 shows that the
accuracy drops to 76.3–81.0%. When RoMF is then directly
tested on our test platform, a similar performance of 71.5–
81.3% can be achieved. According to this result, we will
further update our Wi-Fi testbed by increasing the spatial
antenna gain to further improve its performance in the
future.

System Overhead. Finally, we examine system overhead.
Overall, RoMF is a lightweight WHAR design. The three
versions of RoMF for FMCW, Wi-Fi and acoustic only
contains 5.8, 6.2 and 5.8 million parameters, respectively.
During our development, training of RoMF can be done
in 8–10 hours. When RoMF works after training, it can
complete each recognition within 181–561 ms, where the
delay mainly comes from two parts: signal preprocessing
to generate sensing signature and GNN-based inference.
Specifically, it takes 110–490 ms to complete the sensing
signature generation. Due to the small size of our GNN
model, inference can be done within 71–74 ms, the power
consumption and memory usage are below 120 watt and 1.1
GB, respectively. In contrast, the fine-tuning process requires
158 watts and 1.6 GB. This represents that 24% power
consumption and 31% memory usage can be saved by RoMF
by avoiding fine-tuning. Table 2 summarizes details using
different sensing signals for eight classes on a desktop with
an AMD 3700X CPU and NVIDIA 3090 GPU.

5 POINTS OF DISCUSSION

Scalability. In practical applications, the number of activ-
ities (K) to be classified frequently changes, which chal-
lenges the system’s scalability. The design of RoMF can
address this issue by training multiple versions of models,
each with a different value of k. When the number of classes
is large, we select the version with a larger k, and vice
versa. This approach ensures performance while controlling
system latency by managing the number of combinations
checked by the Decompose-and-vote block.

Regression Tasks. With our current design, RoMF can
only deal with classification tasks. In the field of wireless
sensing, there are many regression tasks also face the issue
of unseen conditions, such as localization and vital signal
monitoring. GNN have the capability to handle regression
tasks, as demonstrated in various applications like molec-
ular property prediction, traffic flow prediction, and user
influence prediction. Therefore, an important future work is
to explore sensing methods for the unseen condition issue
in regression tasks with GNN.

Deployment Potential. With the rapid advancement of edge
AI hardware, the computational resource of current edge
AI devices (e.g., NVIDIA Jetson AGX Orin) are comparable
to the hardware we used. Therefore, even though our ex-
periments were not conducted on edge devices, the system
overhead of RoMF still demonstrates its capability to be
deployed on edge and perform recognition tasks efficiently.

6 RELATED WORK

Wireless human activity recognition. Although traditional
computer vision-based human activity recognition meth-
ods [42], [43], [44] have high accuracy, they are lim-
ited by several factors, such as lighting conditions, oc-
clusion, and privacy concerns. Therefore, various wireless
signals, including acoustic signals [30], [45], [46], millimeter
waves [47], [48], [49] and Wi-Fi [50], [51], [52], are fur-
ther explored to realize wireless human activity recognition
(WHAR). However, the WHAR model generally cannot be
used in new conditions (including environments, users, and
activity classes), limiting practical deployment. To address
this issue, Jiang et al., Wang et al., and Shi et al. [14], [53],
[54] try to extract context/subject-independent features of
data sharing under different conditions. Cheng et al. [35] en-
able cross-domain gesture recognition by defining gesture-
specific features and body velocity curves. Meanwhile, with
the advancement of meta-learning, MetaSense [10] uses it
to efficiently adapt the recognition model to new users.
RF-Net [11] combines a dual-path feature extractor and a
metric-based meta-learning approach for few-shot activity
recognition in new environments. OneFi [13] further pro-
poses a one-shot learning algorithm to reduce the overhead
of data collection under new conditions. However, these
existing methods require fine-tuning the model, limiting the
wide spread of WHAR. In RoMF, our GNN-based model
can adapt to new conditions without fine-tuning the model.

Meta-learning. The purpose of meta-learning is to train
a model with very few data samples [55], [56], [57]. It
can be roughly divided into three types: model-based,

12

optimization-based, and metric-based. The model-based
methods [57], [58], [59] learn a model that can adapt to new
tasks by adjusting its parameters based on the similarity
between the new tasks and the tasks used for training.
Optimization-based methods [60], [61] aim to learn optimal
training algorithms with well-initialized weights or learning
rates. Metric-based methods [62], [63], [56] classify target
data samples by comparing their similarity to labeled data
samples with an appropriate distance metric. The design of
RoMF in this paper belongs to a metric-based method under
the meta-learning framework.

Graph neural networks. Graph Neural Network
(GNN) [64], [65] consists of vertices and edges, and
further utilizes edge operations and vertex operations to
propagate messages and update vertex representations.
GNNs are commonly used for few-shot learning tasks
in computer vision [12], [66], where the goal is to learn
new tasks with only a few labeled data samples. To the
best of our knowledge, we are the first to combine GNNs
and meta-learning in a WHAR system to adapt to new
conditions without fine-tuning the model.

7 CONCLUSION

This paper introduces RoMF, a novel wireless-based human
activity recognition system that can efficiently adapt to
unseen conditions guided by few-shots of data samples, but
avoids model fine-tuning. We observe and employ a key
insight that is invariant across different sensing conditions,
based on which we propose RoMF from a new learning
perspective to minimize the effect of sensing conditions.
Moreover, we design a decompose-and-vote mechanism to
ensure that even if the number of activities changes under
new conditions, fine-tuning can still be avoided. Extensive
evaluations show encouraging performance gains of RoMF.

ACKNOWLEDGEMENTS

This work is supported by the General Research Fund
(GRF) grants from Research Grants Council of Hong Kong
(CityU 11213622) and the Shenzhen Science and Technology
Program (Grant No.ZDSYS20210623092007023).

REFERENCES

[1] Z. Chi, Y. Yao, T. Xie, X. Liu, Z. Huang, W. Wang, and T. Zhu, “Ear:
Exploiting uncontrollable ambient rf signals in heterogeneous
networks for gesture recognition,” in Proceedings of ACM SenSys,
2018.

[2] A. Wang and S. Gollakota, “Millisonic: Pushing the limits of
acoustic motion tracking,” in Proceedings of CHI, 2019.

[3] H.-B. Zhang, Y.-X. Zhang, B. Zhong, Q. Lei, L. Yang, J.-X. Du,
and D.-S. Chen, “A comprehensive survey of vision-based human
action recognition methods,” Sensors, 2019.

[4] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang, “Jointly learning het-
erogeneous features for rgb-d activity recognition,” in Proceedings
of IEEE CVPR, 2015.

[5] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proceedings of ACM Mobi-
Com, 2013.

[6] H. Alemdar and C. Ersoy, “Wireless sensor networks for health-
care: A survey,” Computer networks, 2010.

[7] B. Jokanovic, M. Amin, and B. Erol, “Multiple joint-variable do-
mains recognition of human motion,” in Proceedings of IEEE Radar
Conference, 2017.

[8] Z. Chi, Y. Yao, T. Xie, X. Liu, Z. Huang, W. Wang, and T. Zhu, “Ear:
Exploiting uncontrollable ambient rf signals in heterogeneous
networks for gesture recognition,” in Proceedings of ACM SenSys,
2018.

[9] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson,
J. Stankovic, and K. Whitehouse, “The hitchhiker’s guide to suc-
cessful residential sensing deployments,” in Proceedings of ACM
SenSys, 2011.

[10] T. Gong, Y. Kim, J. Shin, and S.-J. Lee, “Metasense: Few-shot
adaptation to untrained conditions in deep mobile sensing,” in
Proceedings of ACM SenSys, 2019.

[11] S. Ding, Z. Chen, T. Zheng, and J. Luo, “Rf-net: A unified meta-
learning framework for rf-enabled one-shot human activity recog-
nition,” in Proceedings of ACM SenSys, 2020.

[12] V. G. Satorras and J. B. Estrach, “Few-shot learning with graph
neural networks,” in Proceedings of ICLR, 2018.

[13] R. Xiao, J. Liu, J. Han, and K. Ren, “Onefi: One-shot recognition for
unseen gesture via cots wifi,” in Proceedings of ACM SenSys, 2021.

[14] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas et al., “Towards environment indepen-
dent device free human activity recognition,” in Proceedings of
ACM MobiCom, 2018.

[15] A. Virmani and M. Shahzad, “Position and orientation agnostic
gesture recognition using wifi,” in Proceedings of ACM MobiSys,
2017.

[16] X. Wang, K. Sun, T. Zhao, W. Wang, and Q. Gu, “Dynamic
speed warping: Similarity-based one-shot learning for device-free
gesture signals,” in Proceedings of IEEE INFOCOM, 2020.

[17] M. A. Jamal and G.-J. Qi, “Task agnostic meta-learning for few-
shot learning,” in Proceedings of IEEE/CVF CVPR, 2019.

[18] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Widar3. 0: Zero-effort cross-domain gesture recognition with wi-
fi,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[19] C. Iovescu and S. Rao, “The fundamentals of millimeter wave
sensors,” Texas Instruments.

[20] H. Xue, Q. Cao, Y. Ju, H. Hu, H. Wang, A. Zhang, and L. Su,
“M4esh: mmwave-based 3d human mesh construction for multi-
ple subjects,” in Proceedings of ACM SenSys, 2022.

[21] X. Zhang, Z. Li, and J. Zhang, “Synthesized millimeter-waves for
human motion sensing,” in Proceedings of ACM SenSys, 2022.

[22] D. Tahmoush, “Review of micro-doppler signatures,” IET Radar,
Sonar & Navigation, 2015.

[23] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state
information: A survey,” ACM Computing Surveys, 2019.

[24] G. Chi, Z. Yang, J. Xu, C. Wu, J. Zhang, J. Liang, and Y. Liu, “Wi-
drone: wi-fi-based 6-dof tracking for indoor drone flight control,”
in Proceedings of ACM MobiSys, 2022.

[25] Z. Chen, T. Zheng, and J. Luo, “Octopus: a practical and versatile
wideband mimo sensing platform,” in Proceedings of ACM Mobi-
Com, 2021.

[26] J. Zhang, F. Wu, B. Wei, Q. Zhang, H. Huang, S. W. Shah, and
J. Cheng, “Data augmentation and dense-lstm for human activity
recognition using wifi signal,” IEEE Internet of Things Journal, 2020.

[27] G. Laput, K. Ahuja, M. Goel, and C. Harrison, “Ubicoustics: Plug-
and-play acoustic activity recognition,” in Proceedings of ACM
UIST, 2018.

[28] J. M. Sim, Y. Lee, and O. Kwon, “Acoustic sensor based recognition
of human activity in everyday life for smart home services,”
International Journal of Distributed Sensor Networks, 2015.

[29] J. Lian, X. Yuan, M. Li, and N.-F. Tzeng, “Fall detection via
inaudible acoustic sensing,” Proceedings of ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2021.

[30] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking
using acoustic signals,” in Proceedings of ACM MobiCom, 2016.

[31] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE transactions on
neural networks, 2008.

[32] F. Rosenblatt, “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” Psychological review,
1958.

[33] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings
of ICML, 2017.

[34] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings of ICML,
2013.

13

[35] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and
Z. Yang, “Zero-effort cross-domain gesture recognition with wi-
fi,” in Proceedings of ACM MobiSys, 2019.

[36] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter
level localization using wifi,” in Proceedings of ACM SIGCOMM,
2015.

[37] Z. Liu, G. Singh, C. Xu, and D. Vasisht, “Fire: enabling reciprocity
for fdd mimo systems,” in Proceedings of ACM MobiCom, 2021.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” Advances
in neural information processing systems, 2019.

[39] J. Zhang, Z. Chen, C. Luo, B. Wei, S. S. Kanhere, and J. Li,
“Metaganfi: Cross-domain unseen individual identification using
wifi signals,” Proceedings of ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2022.

[40] C. Feng, N. Wang, Y. Jiang, X. Zheng, K. Li, Z. Wang, and
X. Chen, “Wi-learner: Towards one-shot learning for cross-domain
wi-fi based gesture recognition,” Proceedings of ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2022.

[41] Z. Ma, S. Zhang, J. Liu, X. Liu, W. Wang, J. Wang, and S. Guo, “Rf-
siamese: approaching accurate rfid gesture recognition with one
sample,” IEEE Transactions on Mobile Computing, 2022.

[42] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a
new model and the kinetics dataset,” in Proceedings of IEEE CVPR,
2017.

[43] N. Hussein, E. Gavves, and A. W. Smeulders, “Timeception for
complex action recognition,” in Proceedings of IEEE/CVF CVPR,
2019.

[44] Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. Snoek, “Videol-
stm convolves, attends and flows for action recognition,” Elsevier
Computer Vision and Image Understanding, 2018.

[45] W. Mao, M. Wang, W. Sun, L. Qiu, S. Pradhan, and Y.-C. Chen,
“Rnn-based room scale hand motion tracking,” in Proceedings of
ACM MobiCom, 2019.

[46] Y. Wang, J. Shen, and Y. Zheng, “Push the limit of acoustic gesture
recognition,” IEEE Transactions on Mobile Computing, 2020.

[47] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig,
E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous gesture sens-
ing with millimeter wave radar,” ACM Transactions on Graphics.

[48] H. Liu, Y. Wang, A. Zhou, H. He, W. Wang, K. Wang, P. Pan, Y. Lu,
L. Liu, and H. Ma, “Real-time arm gesture recognition in smart
home scenarios via millimeter wave sensing,” Proceedings of ACM
on interactive, mobile, wearable and ubiquitous technologies, 2020.

[49] S. M. Kwon, S. Yang, J. Liu, X. Yang, W. Saleh, S. Patel, C. Math-
ews, and Y. Chen, “Hands-free human activity recognition using
millimeter-wave sensors,” in Proceedings of IEEE DySPAN, 2019.

[50] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu,
“E-eyes: device-free location-oriented activity identification using
fine-grained wifi signatures,” in Proceedings of ACM SenSys, 2014.

[51] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali,
H. Hu, Z. Sun, and L. Su, “Towards 3d human pose construction
using wifi,” in Proceedings of ACM MobiCom, 2020.

[52] D. Wu, D. Zhang, C. Xu, H. Wang, and X. Li, “Device-free wifi
human sensing: From pattern-based to model-based approaches,”
IEEE Communications Magazine, 2017.

[53] Z. Wang, S. Chen, W. Yang, and Y. Xu, “Environment-independent
wi-fi human activity recognition with adversarial network,” in
Proceedings of IEEE ICASSP, 2021.

[54] C. Shi, J. Liu, N. Borodinov, B. Leao, and Y. Chen, “Towards
environment-independent behavior-based user authentication us-
ing wifi,” in Proceedings of IEEE MASS, 2020.

[55] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural
networks for one-shot image recognition,” in ICML deep learning
workshop, 2015.

[56] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” Advances in neural information
processing systems, 2016.

[57] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of ICML, 2017.

[58] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems,
2017.

[59] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
Proceedings of ICML, 2016.

[60] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn
quickly for few-shot learning,” arXiv preprint arXiv:1707.09835,
2017.

[61] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn
by gradient descent by gradient descent,” Advances in neural
information processing systems, 2016.

[62] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in Proceedings of
IEEE CVPR, 2018.

[63] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B.
Tenenbaum, H. Larochelle, and R. S. Zemel, “Meta-learning
for semi-supervised few-shot classification,” arXiv preprint
arXiv:1803.00676, 2018.

[64] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[65] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Ben-
gio et al., “Graph attention networks,” stat, 2017.

[66] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in Proceedings of IEEE/CVF CVPR,
2019.

Xiaotong Zhang received his B.E. degree in
computer science and technology from Southern
University of Science and Technology in 2019.
He is currently a joint Ph.D. student in computer
science at City University of Hong Kong and
Southern University of Science and Technology.
His research interests include wireless sensing
and mobile AI systems.

Qingqiao Hu received his B.E. degree in com-
puter science and technology from Southern
University of Science and Technology in 2021
and the M.S. degree in electrical and com-
puter engineering from UCLA in 2023. He is
currently a Ph.D. student in computer science
at Stony Brook University. His research include
deep learning, computer vision and technology
making system automatic.

Zhen Xiao received the B.E. degree from City
University of Hong Kong in 2018 and the Ph.D.
degree from City University of Hong Kong, in
2023. He is currently a Postdoc in the Depart-
ment of Computer Science, City University of
Hong Kong. His research interests include wire-
less sensing, deep learning, and cyber security.

Tao Sun received his B.E. degree in Department
of Computer Science and Engineering in 2022.
He is currently a master student in Computer
Science and Engineering, at Southern Univer-
sity of Science and Technology. His research
interests include acoustic sensing and wearable
devices.

Jiaxi Zhang received his B.E. degree in Depart-
ment of Computer Science and Engineering in
2022. He is currently a joint Ph.D. in Computer
Science and Engineering, The Hong Kong Uni-
versity of Science and Technology, and Depart-
ment of Computer Science and Engineering, at
Southern University of Science and Technology.
His research interests include rehabilitation us-
ing wearable devices.

14

Jin Zhang is currently an associate professor
with the Department of Computer Science and
Engineering, Southern University of Science and
Technology, Shenzhen. She received her B.E.
and M.E. degrees in electronic engineering from
Tsinghua University, Beijing, in 2004 and 2006
respectively, and received her Ph.D. degree in
computer science from Hong Kong University of
Science and Technology, Hong Kong, in 2009.
She was then employed in HKUST as a research
assistant professor. Her research interests are

mainly in mobile healthcare and wearable computing, wireless com-
munication and networks, network economics, cognitive radio networks
and dynamic spectrum management. She has published more than
70 papers in top-level journals and conferences. She is the Principle
Investigator of several research projects funded by National Natural
Science Foundation of China, Hong Kong Research Grants Council and
Hong Kong Innovation and Technology Commission.

Zhenjiang Li received the B.E. degree from
Xi’an Jiaotong University, China, in 2007, and
the M.Phil. and Ph.D. degrees from the Hong
Kong University of Science and Technology,
Hong Kong, China, in 2009 and 2012, respec-
tively. He is currently an Associate Professor
with the Department of Computer Science, City
University of Hong Kong. His research interests
include Internet of Things, wearable and mobile
computing, smart health, deep learning and dis-
tributed computing.

15

	Introduction
	Background
	Unseen Sensing Conditions
	Modeling Sensing Signals
	Meta-learning Basics

	System Design
	GNN-based Recognition Model
	Vertex construction
	Graph Operations
	GNN model

	Support for More Activity Classes
	Decompose-and-vote block
	Extension for fewer classes

	Meta-Learning Framework
	Task requirements
	Task generation
	Summary

	Evaluation
	Implementation
	Testbeds and datasets
	Unseen conditions for evaluation
	Model training

	Overall Performance
	Micro-Benchmarks

	Points of Discussion
	Related Work
	Conclusion
	References
	Biographies
	Xiaotong Zhang
	Qingqiao Hu
	Zhen Xiao
	Tao Sun
	Jiaxi Zhang
	Jin Zhang
	Zhenjiang Li

