
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023 2797

LB-Chain: Load-Balanced and Low-Latency
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Abstract—Blockchain sharding has been increasingly used to
improve blockchain systems’ performance, in which a blockchain
is split into multiple smaller, disjoint shards. In practice, how-
ever, sharding can only achieve limited throughput and latency
improvement, especially for the user-perceived transaction con-
firmation delay. The performance degradation is believed to be
caused by the cross-shard transactions. However, we show, through
comprehensive system deployment and measurement studies, that
the main culprit is the imbalanced transaction load on different
blockchain shards. To address this problem, we propose a novel
sharding system, called LB-Chain, which dynamically balances
the transaction load on different shards by periodically migrating
active accounts from heavily-loaded shards to less-loaded ones.
We have implemented a prototype of LB-Chain, and evaluated
its performance through large-scale blockchain deployment using
real-world transaction traces. Extensive experiments confirm that
LB-Chain significantly boosts sharding performance, reducing the
transaction confirmation delays by up to 90% while increasing
the transaction throughput by more than 10%. The delay difference
between different accounts is also reduced dramatically, leading to
improved fairness in the system.

Index Terms—Account migration, blockchain, blockchain
sharding, load balance.

I. INTRODUCTION

B LOCKCHAIN has been instrumental for enabling de-
centralized digital currencies [25], [39], and has drawn

tremendous attention from academia and industry. However, as
the number of transactions surges in the existing blockchain
systems, throughput scalability becomes a major challenge in
system deployment. Blockchain sharding has been proposed as
an effective solution for scaling the throughput of blockchain
systems [24]. It splits a blockchain into multiple disjoint parts,
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called shards. Each shard is maintained by a subgroup of nodes,
and different shards execute disjoint transactions in parallel.

While sharding improves blockchain throughput, however,
there is still a significant throughput gap between the exist-
ing sharding protocols and the potential throughput speedup.
Ideally, the system throughput should increase proportional to
the number of shards. Nevertheless, it is observed that existing
sharding systems result in over 30% throughput loss [26] com-
pared to the ideal case, degrading the throughput scalability.
More importantly, most existing blockchain sharding protocols
overlook another important performance issue: how to improve
user-perceived transaction confirmation delay (TCD) [42]. The
user-perceived transaction confirmation delay means the delay
between the time that a transaction is sent by a user until it is com-
mitted into the blockchain. This is an important metric because
users (aka accounts, clients) are concerned about how quickly
the transactions they send can be committed into the blockchain.
However, existing blockchain sharding solutions still suffer from
high latency. It is observed that the user-perceived TCD in
existing solutions reaches more than hundreds of seconds [26],
which is disruptive to the user experience. Cross-shard trans-
actions and imbalanced transaction load might be the crux for
the above performance degradation [14], [22], [26], [28], [36],
[38]. A cross-shard transaction represents a transaction sent
from one shard to another, which typically incurs additional
communication overhead. Transaction load imbalance refers to
the unbalanced number of transactions processed in different
shards, resulting in many shards having more transactions than
they can process. Both of them may harm the performance of
the sharding system. However, the first research gap is that little
work has analyzed in real systems that how much performance
degradation can be impaired by cross-shard transactions and
transaction load imbalance, and who dominates the impact on
performance. Some studies claim that the cross-shard transac-
tion is the main culprit in performance loss [26], [29]. Some other
works argue that the imbalanced transaction load dominates the
performance loss of blockchain sharding [28], [38]. However,
their arguments are not confirmed in a real system. The second
research gap is that among those works focusing on transaction
load balance [16], [28], [38], they mainly focus on proposing
account allocation algorithms, however, neglecting to design a
secure and efficient account and transaction migration protocol
in a real blockchain sharding system. In practice, it is not
enough to have only an account allocation algorithm, it is more
essential to design a migration protocol in real systems so that ac-
counts and transactions can actually be migrated between shards
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based on the allocation results to achieve load balance in the
system.

To fill the first research gap, we present a systematic study
in a real blockchain sharding system (QuarkChain [3]) to show
that, it is the imbalanced transaction load on different shards
that dominates the high delay and limited throughput in gen-
eral cases. In previous blockchain sharding systems [10], [36],
each account is randomly bound to a specific shard. However,
the number of transactions generated by each account varies
dramatically, which results in a severe load imbalance on dif-
ferent blockchain shards. Through measurements based on real
Ethereum transactions, we find that the number of transactions
executed by a heavily-loaded shard is more than 5× than a
less-loaded shard (Section II-D). A heavily loaded shard causes
longer user-perceived transaction confirmation delays because
the nodes cannot process transactions as fast as the user send
them. A shard with low load, on the other hand, suffers from
a decrease in throughput because fewer transactions can be
processed. Specifically, it is found that the transaction load
imbalance causes up to thousands of seconds of user-perceived
confirmation delay and 35% throughput loss (Section III).

Driven by the above findings, we then propose LB-Chain,
a novel blockchain sharding framework that achieves Load
Balance on different shards. It fills the second research gap
by proposing an intelligent account and transaction migration
protocol to achieve efficient and secure migrations between
shards. The main idea of LB-Chain is that, it periodically predicts
the upcoming number of transactions for accounts and uses
the prediction results to determine which accounts should be
allocated to which shards (i.e., account allocation algorithm)
for improved load balance. Based on the allocation results, the
sharding nodes (miners) in LB-Chain utilize our core design:
a secure and efficient account migration protocol, to migrate
accounts from heavily loaded shards to lightly loaded shards,
thus achieving transaction load balance on each shard in the
system.

The design of LB-Chain faces two main challenges. First,
how to propose an efficient and secure migration scheme in
blockchain sharding? To balance the load on different shards,
account migration is required. Because merely moving a trans-
action to other shards will cause the execution failure, as other
shards have no information about the accounts that are associated
with the transaction. More importantly, malicious nodes may
attack the system during account migration, and simple account
migration mechanisms also causes performance loss (explained
in next paragraph). Therefore, a secure and efficient account
migration protocol is necessary to protect the security during
migration without excessive performance loss. This is an impor-
tant point that has been overlooked in previous works. Second,
how should an account allocation algorithm determine which
and how many accounts should be migrated? Specifically, the
load balance results also rely on the account allocation decision
(which account to be migrated to which shard). Moreover,
it is infeasible to allocate all accounts in practice, as there
are numerous accounts in a large-scale system. Therefore, a
practical account allocation scheme is required to balance the
loads among shards with only a small number of accounts being
allocated.

Secure and Efficient Migration for Account and Transaction.
To address the first challenge, we propose a secure and efficient
account and transaction migration scheme.

Simply migrating the account states causes severe security
issue. Unlike traditional databases [11], [31], [35], security is
particularly important in blockchain systems. In the process of
migrating account states, malicious nodes may launch various
attacks, such as generating invalid messages, sending repeated
migration messages (replay attacks), etc. Therefore, we make
several designs to secure the account migration. For example, to
prevent invalid messages, any account migration message needs
to be verified and pass the consensus. To prevent replay attacks,
we set a unique serial number (named migration nonce) for
the migration message of each account, and the continuity of
the nonce is required to be verified for security. A straightfor-
ward migration scheme degrading system efficiency if it cannot
properly handle the transaction migration related to an account.
To achieve transaction migration for improved efficiency, we
propose schemes that 1) migrate the queuing transactions along
with the account migration and 2) postpone the validations for
newly arrived transactions to prevent them from being aborted
early (explained in detail in Section V-B). These schemes reduce
the transaction validation failure probability, increasing system
performance. We also design to raise the execution priority for
the account state migration. As the account migration can be
processed quickly, the transactions associated with the account
can be thus handled quickly, improving system efficiency.

Practical Account Allocation. To address the second chal-
lenge, we propose an account allocation algorithm to improve
the load balance on different shards by moving as few accounts
as possible. The algorithm periodically exploits the predicted
upcoming transactions and the existed queuing transactions
to calculate the loads for a few hot accounts. Based on the
calculated loads, the algorithm allocates hot accounts for better
load balance, and finally determines the account allocations.
Therefore, the proposed account allocation algorithm improves
the load balance on shards with only a small number of accounts
being allocated. This helps reduce both the complexity of the
account allocation algorithm and the number of accounts that
need to be migrated, thus improving system efficiency.

We summarize the main contributions of this article as
follows:
� Measurement Studies: We conduct systematic measure-

ment studies using a real blockchain sharding system to
justify that the imbalanced transaction load is the main
culprit to the performance loss of blockchain sharding in
general cases.

� Account and Transaction Migration: We propose and im-
plement an efficient and secure migration scheme for ac-
counts and transactions in LB-Chain. This scheme is secure
under the blockchain sharding scenario, and it maintains
high efficiency under real implementations.

� Account Allocation: In LB-Chain, we propose and im-
plement a practical account allocation algorithm that can
improve the transaction load balance by moving only a few
hot accounts.

� System Implementation: We develop a prototype for LB-
Chain and conduct extensive experiments. Experimental
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results based on real Ethereum transaction trace show
that, compared with existing blockchain sharding schemes,
LB-Chain effectively balances the load among shards,
reducing user-perceived transaction confirmation delay by
up to 90%. Moreover, LB-Chain also achieves near-optimal
throughput compared with an ideal load balance scheme.

II. BACKGROUND, MOTIVATION AND RELATED WORK

A. Blockchain and Blockchain Sharding

Blockchain, as a promising decentralized technology, has a
great potential in numerous scenarios and systems [34], ranging
from the cryptocurrency (e.g., Bitcoin [25] and Ethereum [39]),
to other infrastructures and applications (e.g., Internet-of-
Things [17], [27], Digitial Health [8], [20]). Unfortunately, ex-
isting blockchain systems suffer low transaction throughput and
high latency issues, which hinder blockchain adoption in many
systems that require high transaction throughput and real-time
transaction processing.

Several blockchain sharding protocols [14], [15], [18], [22],
[24], [36], [42], [43] have been proposed to address the through-
put scalability issue in legacy blockchain systems (e.g., Bit-
coin and Ethereum). Unlike the legacy blockchain where all
nodes need to communicate to maintain the same copy of
the blockchain, sharding splits the nodes into multiple groups
(shards). Each shard maintains its independent piece of state
and transaction history, and executes different transactions in
parallel. Among these works, however, they focus on designing
and implementing various sharding systems to improve the
scalability for legacy blockchain. Most of them do not to analyze
the reasons affecting the sharding performance.

B. UTXO/Account Model and Existing Transaction Placement
Strategy

A natural question for blockchain sharding is how to place
transactions on different shards. There are two models: UTXO
model and account model. In UTXO (Unspent Transaction Out-
put) model [9], [25], transactions are placed in different shards
independently according to the transaction ID [18], [24]. While
in the account model [39], the transaction is placed to different
shard according to its sending account [10], [36]. Therefore,
the transactions sent by the same sending account are placed
in the same shard. The account model is usually thought to
be more universal than UTXO as it can easily support smart
contracts [7]. Additionally, the account model can be extended
and used in more complex scenarios and applications other than
cryptocurrency [12], [41]. Therefore, in this article, our system
is built on the account model.

C. Performance Metrics of Blockchain Sharding Systems

One objective of blockchain sharding is to improve the
throughput of blockchain. The system throughput is measured
by transaction per second (TPS), meaning the number of trans-
actions that can be executed per second. Ideally, the throughput
should scale out linearly with the number of shards increasing.
However, it is observed that the TPS could degrade over 30%

compared with the ideal transaction rate in sharding systems
such as OmniLedger [26], which is quite severe. Our measure-
ments also reveal similar observations where up to 35% TPS
loss occurs in the existing sharding system (Fig. 2(c)).

From the user’s perspective, what matters more than system
throughput is how long it takes for the transactions they send
to be packed into blocks (i.e., user-perceived transaction con-
firmation delay (TCD)). Reducing user-perceived TCD is also
another design target of blockchain sharding. However, existing
blockchain sharding systems cause huge user-perceived TCD
(hundreds of seconds in OmniLedger [26], and up to thousands
of seconds in our experiments). Some sharding systems claim
they achieve short transaction confirmation delays [14], [42].
However, the latency in their works is defined as the time from
when a transaction is packed into a block to when that block is
committed. This latency ignores the queuing time between when
the transaction is submitted by the user until the transaction is
packed into the block. Therefore such delay is less meaningful
to the users.

Finally, not only do users suffer from high TCD, but there
are also significant differences between the transaction con-
firmation delays of different users. We name this difference
of the average transaction waiting time (TCD) among users
(accounts) as fairness. Poor fairness inevitably detracts from the
user experience, therefore maintaining good fairness is essential
in practical systems. However, we observe in our measurement
study that existing sharding system has poor fairness perfor-
mance. Consequently, it is essential to design a scalable shard-
ing system that achieves increased system throughput, reduced
transaction confirmation delay, and improved fairness among
accounts.

D. Transaction Load Imbalance and Cross-Shard
Transactions

To scale out blockchain sharding systems, it is essential to
investigate which factors affect sharding performance. Transac-
tion load imbalance and cross-shard transaction are believed to
be two factors that injure existing blockchain sharding systems’
performance [26], [28], [29], [36], [38].

Transaction load imbalance represents the difference in the
number of transactions processed by different shards, resulting
in some shards being busy while others idle. In the account
model, load imbalance becomes even worse than that in the
UTXO model, since once an account is allocated to a certain
shard, all its transactions are allocated to that shard. Therefore,
hot accounts (account that involves a great number of trans-
actions) easily overwhelm the load of the shard they are in,
resulting in uneven load among shards.

We conduct a measurement study to evaluate the severity of
load imbalance in existing sharding systems. Specifically, we use
real-world Ethereum transactions and distribute them according
to the existing random transaction placement scheme (refer to
Section II-B in detail). Fig. 1 shows that the existing transaction
placement strategy causes severe load imbalance across shards.
For example, in 32 shards, a heavy-loaded shard has more than
5× number of transactions than a light-loaded shard.
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Fig. 1. Transaction distribution across shards. Each line represents the trans-
action load on each shard for the corresponding number of shards.

Cross-shard transaction is generated when one transaction is
transmitted from one shard to another. In this article, cross-shard
transactions include those that span two shards (e.g., normal
transfer transactions). How to handle complex cross-shard smart
contract transactions is beyond our scope in this article. In
fact, most existing blockchain sharding studies also suffer from
this limitation. We will consider how to handle cross-shard
smart contract transactions in our future work. Compared with
an intra-shard transaction, a cross-shard transaction typically
involves additional time and network overhead. The reason
is that existing blockchain sharding systems usually design a
series of multi-round protocols for cross-shard transactions to
prevent double-spending [10], [42], hindering the efficiency of
transaction processing.

E. Related Works

Some works explore the impact of cross-shard transactions
on blockchain sharding performance [23], [26], [29]. As a
typical example, authors in [26] claim that cross-shard trans-
action causes huge impact on the sharding performance, but
the conclusion is mainly derived from theoretical analysis and
simulations. In next section, our experiments in real systems will
show that it is the imbalanced load that causes a great degradation
on performance, especially on the user-perceived confirmation
delay.

A few related works have studied load balancing in blockchain
sharding [16], [19], [28], [38]. For instance, [38] proposes a
load balancing mechanism based on transaction load prediction
and account relocation algorithm. In [19], the authors propose
a load balancing framework in sharded blockchains in which
objects (e.g., accounts) are frequently reassigned into shards.
The authors in [16] propose a load balancing scheme using
the graph partitioning algorithm. However, those works focus
mainly on the algorithm design for account allocation. Their
works do not involve the design and implementation of a practi-
cal account migration mechanism in real sharding systems. One
of the main contributions of LB-Chain is to propose a secure and
efficient account migration mechanism, which is not studied in
the previous works. Moreover, we conduct measurement studies
in real systems to justify the performance degradation caused by
load imbalance, as discussed in the next section.

Load balancing is an important issue in traditional distributed
databases [11], [31], [35]. However, distributed databases and

blockchain sharding are inherently different [30]. There are
Byzantine nodes in blockchain who can behave arbitrarily
wrong. While in distributed databases, nodes are typically as-
sumed honest or can only crash. Therefore, blockchain systems
require higher security guarantee compared to databases. Due
to different security assumptions, it is more challenging to
design practical migration mechanisms in blockchain sharding
to achieve load balancing. For example, how to perform secure
migration in blockchain sharding where there is no trusted
coordinator? LB-Chain proposes a secure and efficient migration
mechanism to help the blockchain sharding system balance its
load.

III. MEASUREMENT STUDY

We conduct measurement studies in a real sharding system
to analyze the negative impact of transaction load imbalance
and cross-shard transactions on user-perceived transaction con-
firmation delay and system throughput, respectively. The results
shows that, in our experiments, it is the imbalanced transaction
load that results in high latency and limited throughput.

A. Basic Experiment Settings

Our measurement study is based on a well-known pub-
lic blockchain sharding project named QuarkChain [3].
QuarkChain’s implementation is based on Ethereum. In the ex-
periments, we deployed 32 r5.xlarge EC2 instances in different
regions, each with a quad-core processor and 32 G memory.
8 shards are implemented, and 800,000 transactions are gen-
erated. We manually adjust the cross-shard transaction ratio
and the number of transactions (loads) on different shards. For
the blockchain parameters, we set a 500 transaction limit for
each block, a target of 10-second block creation interval (result-
ing a 50 TPS transaction processing capacity for each shard),
and a 30 Mbps end-to-end bandwidth. The average transaction
generation rate is set as 50 TPS per shard by default. These
parameter settings are practical and reasonable in real systems,
which is similar to previous work [36] and Ethereum. We think
that the results of our experiments are somewhat generalizable,
since our experimental environment is practical and the system
we based on has a similar underlying architecture to many other
blockchain sharding systems.

B. Impact of Transaction Load Imbalance

We first evaluate the performance degradation caused by
transaction load imbalance on throughput and delay. The re-
sults illustrate that transaction load imbalance causes significant
degradation on user-perceived TCD and TPS.

To eliminate the influence caused by cross-shard transactions,
we controlled the ratio of cross-shard transactions as 0. We
changed the skewness of transaction distribution on shards (i.e.,
change the number of transactions in different shards) to conduct
the evaluation. We analyzed the transactions in Ethereum and
found that each shard’s real transaction distribution can be fitted
into Zipf distribution. Fig. 2(a) shows the number of transactions
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Fig. 2. Results for transaction load imbalance.

Fig. 3. Results for cross-shard transactions.

for shard No. 1 to shard No. 8, which nicely fits the Zipf distribu-
tion. Therefore, in our experiments, the transaction distribution
is assumed to follow Zipf distribution. We change the exponent
parameter α of Zipf distribution to control the skewness of
transaction distribution in the experiments, where a larger α
means a more imbalanced load distribution.

Fig. 2(b) and (c) show that transaction load imbalance pro-
longs user-perceived TCD to more than 1,000 seconds and
decreases TPS by up to 35%. Specifically, the TPS dramatically
drops and TCD increases when the load becomes imbalanced.
Here we only show the results up to α = 1 since the α value in
real transaction distribution is usually less than 1. It is expected
that the impact on TCD and TPS will increase as the load
becomes more imbalanced.

C. Impact of Cross-Shard Transactions

We now measure the performance degradation caused by
cross-shard transactions, and show that cross-shard transaction
is not a main factor that affects user-perceived transaction con-
firmation delay and system throughput.

To eliminate the influence caused by transaction load imbal-
ance, we kept the number of transactions on each shard to be
the same (i.e., 50 TPS per shard). We then changed the ratio
of cross-shard transactions to observe the effect of cross-shard
transactions on TCD and TPS.

The impact of cross-shard transactions on user-perceived
TCD is demonstrated in Fig. 3(a). As expected, the cross-shard
transactions do influence TCD, but the influence is small. Specif-
ically, the TCD caused by cross-shard transactions is one order
of magnitude smaller than load imbalance. For example, on
average only 22 s TCD is caused even the cross-shard ratio is
100%. The TCD increases when the cross-shard transaction ratio
increases. The reason is that existing sharding systems usually
use a series of multi-stage protocols to process cross-shard
transactions, thus increasing the confirmation delay. It is worth
noting that the transaction confirmation delay does not increase

infinitely, as the upper limit of the cross-shard ratio is 100%. As a
result, the transaction confirmation delays caused by cross-shard
transactions are small in general.

As shown in Fig. 3(b ), TPS remains almost constant when we
change the cross-shard transaction ratio. The reason is that the
network overhead caused by the cross-shard transactions is small
compared with the bandwidth limitation. Specifically, Fig. 3(c)
illustrates the net bandwidth cost by cross-shard transactions un-
der different TPS, in which the cross-shard ratio is set as 100%.
We found that even 600 cross-shard transactions are executed per
second, the bandwidth cost by cross-shard transactions is only
1 Mbps, which is far less than the practical bandwidth limitation.

Justification of Our Results: Some previous arguments
(e.g., [26]) suggest that cross-shard transaction mainly causes
the performance degradation. We speculate that our results differ
from theirs due to the following points. First, their evaluation is
based on the UTXO model, in which each transaction has a larger
size than in the account model, which occupies more bandwidth.
Second, they conduct evaluations under extremely heavy load
(hundreds of TPS per shard), whereas we use a general and more
practical load setting (as mentioned in Section III-A). Finally,
their deductions and evaluation are based on theoretical analysis
and simulations, without the support of a real implementation.

D. Summary of Measurement Study Results

To sum up, in general, transaction load imbalance causes most
of the negative effect on sharding performance. Specifically, load
imbalance causes extremely long user-perceived TCD, and the
impact on TCD is an order of magnitude bigger than that of
cross-shard transaction (hundreds of seconds versus dozens of
seconds). Additionally, load imbalance causes remarkable TPS
reduction (up to 35%), while cross-shard transaction causes
no influence on TPS in the general case. It is worth noting
that, although our measurement is based on QuarkChain, the
results above and analysis can be generally applied to existing
account model-based blockchain sharding systems, as most of
the underlying protocols are similar (based on Ethereum).

IV. SYSTEM OVERVIEW

In light of the observations that load imbalance is the dom-
inant factor that degrades sharding performance, we propose
LB-Chain, in which smart account allocation and migration
schemes are designed to achieve load-balanced and scalable
sharding.

A. System Model and Overview

LB-Chain is a blockchain sharding system for improved
transaction load balance. Like existing blockchain sharding
systems [14], [18], [24], LB-Chain consists of multiple P2P
nodes (miners). All the nodes are split into multiple shards. Each
shard maintains its independent ledger (blockchain), account
information, and transaction history. Transactions are sent via
different accounts (aka clients, users) into the blockchain shard-
ing system. Similar to many previous works [3], [36], [42], a
transaction is sent to one or multiple nodes in the network. The
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Fig. 4. System architecture.

nodes then follow the gossip protocol and route the transaction
to the corresponding shard. Like many other systems [14], [18],
[24], [36], nodes are connected by a partially synchronous peer-
to-peer network, in which messages sent by a node can reach any
other nodes with optimistic, exponentially-increasing time-outs.
Finally, as mentioned, our system is built on the account model.

The system architecture is illustrated in Fig. 4. There are
mainly two parts in LB-Chain: the allocation service who per-
forms account allocation and the sharding network who conducts
account migration. To balance the load on different shards,
the allocation service (explained in Section IV-B) periodically
performs account allocation. The allocation scheme predicts the
number of transactions for accounts and uses the predicted re-
sults to decide which shard an account should be allocated to. To
actually achieve improved load balance in blockchain sharding
network, the sharding nodes then, according to the allocation
results, perform account migrations to migrate accounts from
the previous shard to the newly allocated shard and migrate their
transactions correspondingly.

B. Account Allocation

In account allocation, the transaction prediction is performed
first to predict the number of future transactions. Based on
the predicted results, the account allocation algorithm is then
performed to decide the accounts’ migrated locations for im-
proved load balance. The account allocation is performed by a
third-party entity named allocation service, which is assumed
to be trustworthy in our article. Many other works also assume
similar third-party entities for various functionalities such as
ordering services [4], [5], [32], [33] or smart contract service
providers [40], hence we think such an entity is practical.

Transaction Prediction: Transaction prediction [21], [37] is an
essential yet challenging part of the system. To improve the load
balance among shards, it is necessary to accurately predict how
many transactions will be generated by the accounts in the future.
This allows the subsequent account allocation algorithm to cal-
culate a more load-balanced account allocation result. Moreover,
the number of transactions sent by different accounts changes
dynamically over time. Therefore, the prediction is performed
periodically based on the epoch. To perform transaction pre-
diction, the allocation service periodically retrieves transaction

Fig. 5. Prediction feasibility analysis.

history from the sharding network. Using machine learning,
the allocation service then predicts the upcoming number of
transactions generated by different accounts and shards.

Account Allocation Algorithm: A well-performed account
allocation scheme should achieve load balance with high ef-
ficiency. However, performing prediction and allocation for all
the accounts is infeasible, as a large-scaled system contains
numerous accounts. Fortunately, we find that a few accounts
(hot accounts) generate most of the transactions (e.g., 100 hot
accounts generate more than 50% of the transactions in Fig. 5(b))
in practice. Seen in this light, we configure the allocation service
to only allocate for the hot accounts, while leaving the rest of
the accounts unmoved.

The account allocation algorithm is executed periodically. It
determines which shard the accounts and their transactions will
be migrated to. Specifically, at the beginning of each epoch,
based on the prediction results, it moves few hot accounts from
the heavily-loaded shard to lightly-loaded shard to improve load
balance, and stops when there is no improvement.

C. Account and Transaction Migration

To actually achieve improved load balance on each shard, the
account and transaction migration is then performed after ac-
count allocation. The migration is performed by nodes (miners)
in the sharding network. The nodes in LB-Chain periodically
obtain account allocation results from the allocation service and
perform migrations. If an account is reallocated to a new shard,
it should be migrated along with its transactions.

To improve transaction load balance, the transactions are
required to be moved from one shard to another. However, this is
not straightforward. Solely changing the location of transactions
causes transaction execution failure, as other shards do not have
the states that are associated with the transactions. Thereby,
an account migration scheme is required to enable the account
current state (e.g., balance, nonce) be moved across shards.

To enable account state migration between shards, we design
the account migration transaction. It is responsible for con-
taining and sending the account state across the shard and is
generated by the nodes in corresponding shard. However, there
are various security issues faced during account migration. To
address it, we make specific designs for the account migration
transaction, and modify the intra-shard consensus accordingly.
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Moreover, we requre the migration process to be verified by other
nodes via intra-shard consensus to secure the account migration.

As accounts being migrated between shards, the transactions
associated with them also need to be migrated accordingly
to ensure the efficiency of the system. To achieve transaction
migration for improved efficiency, we propose to migrate the
queuing transactions along with the account and postponing
validations for newly arrived transactions to prevent new transac-
tions from being aborted. We also propose to raise the execution
priority for the account migration transaction, so that the account
migration transactions and other related transactions can be
processed quickly. According to the above designs, the account
and transaction migration can be processed efficiently.

V. ACCOUNT AND TRANSACTION MIGRATION

We introduce how we design the account and transaction
migration scheme in LB-Chain in this section and leave behind
the explanation of account allocation in Section VI.

At the beginning of every epoch, according to the account al-
location algorithm result, if an account is allocated to a new shard
that is different from the shard it is allocated in the last epoch,
the account should be migrated from the previous shard (i.e.,
source shard) to the new shard (i.e., destination shard). Besides,
the upcoming new arrival transactions of the migrated accounts
should be executed by corresponding destination shards. The
objective of the account migration is to safely migrate accounts
to proper shards according to the allocation results, with low
throughput loss, low latency, and high fairness.

Basic Knowledge: To design a practical account migration
scheme, we must know how existing blockchain sharding sys-
tems work. There are several shards in the system. Each shard
maintains several accounts, the nodes (i. e., minors) belong to
the shard maintains the state of its accounts and process the
transactions generated from the accounts. The account state
contains basic information about an account, such as balance,
current transaction nonce [39] (which indicates the sequence
number of the transaction in the account). Each transaction of
an account has some basic fields, such as the sender account, the
receiver account, transaction nonce, transfer value, the signature,
etc. When a transaction is packed into a block, the miners should
perform verification for the transaction to check whether the
sender’s balance is enough, whether the nonce is successive,
whether the signature is correct, etc. The nonce should be
successive to guarantee security (e.g., preventing replay attacks).

A. Secure Account Migration

When an account is reallocated to a new shard, in order to
execute its upcoming transactions, the nodes in the destination
shard should create this account and maintain its state. However,
it is not easy to notify the new shard and share the account state
information among independently operating shards. Therefore,
we propose a new type of transaction named account migration
transaction, which is generated by the nodes. This special cross-
shard transaction is used to notify the destination shard about the
state of the migrating account.

Ensuring Security: A naive account migration scheme is
vulnerable to various attacks. Malicious nodes may send wrong
migration transaction (i.e., transaction manipulation), send the
same transaction multiple times (i.e., replay attack), or refuse
to send the transaction (i.e., silence attack) to intercept the
account migration process. Therefore, to ensure that the account
migration process is resistant to typical malicious behaviors
mentioned above, we propose the following mechanisms.

To prevent transaction manipulation, each account migra-
tion transaction should be verified by sharding nodes. Nodes
in a shard reach consensus on transactions, and the account
migration transactions are then sent to corresponding destina-
tion shards. Besides the basic verification, each account migra-
tion transaction contains several unique values of fields that
needs to be verified: i) the sender account and the receiver
account of the transaction should be the same (the account
to be moved), ii) the account migration transaction should be
signed by the node proposing the block in the source shard,
iii) the transferred value of the account migration transaction
should equal the balance of the account to be moved. iv) the
source and destination shards in the account migration transac-
tion should be the same as the account allocation result (each
node caches the account allocation results for recent epochs for
validation).

A malicious node could save the account migration trans-
action and resend it later to launch replay attack. To prevent
that, we add an extra field in the account migration transaction
to maintain its sequence number in migration transactions of
the account (called the migration nonce). The migration nonce
should be maintained in the state of each account. When reaching
consensus, each node should verify whether the migration trans-
action of a certain account have consecutive migration nonce.
Only if the nonce is consecutive can the transaction be passed
the verification.

Another malicious behavior is that a malicious node in the
source shard does not send the account migration transactions to
destination shards. In this case, the client or the destination shard
can inform the source shard (similar to [36]). Specifically, the
client who does not receive a transaction confirmation response
after a timeout can inform the source shard. The destination
shard can also send a notification to the source shard if it finds
that the account migration transaction has not been received
after a timeout (by checking the account allocation results). The
notification thus allows account migration transactions to be
resent by other nodes in the source shard.

Migration Procedure: When an account migration occurs,
each node in the source shard locally generates the account
migration transaction and signs it using its own signature. The
block producer (e.g., the miner who has the chance to produce a
block) packages the account migration transactions generated
by itself along with normal transactions into the block, and
broadcasts the block in the shard. All nodes in the shard should
verify all the transactions, and reach a consensus. After the
account migration transactions successfully pass the consensus,
the account migration transactions are sent to corresponding
destination shards (along with normal transactions). The source
shard deletes the migrated account while the destination shard
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constructs the account and updates the account state. If a client
wants to query its account or transaction states, it can send a
request to the blockchain network, and the nodes will route
the request to the corresponding shard according to the ac-
count allocation results, and that shard will return the query
result to the client. By the way, to ensure that the balance of
the migrated account does not change during migration, the
account migration transaction requires no transaction fee. To
encourage nodes to package the account migration transactions,
the one who packages the account migration transaction into
the block will be rewarded by the system (similar to the mining
reward).

B. Efficient Transaction Migration

The above mechanisms enable secure account migration.
However, to further improve the efficiency of our system, we
need to deliberately handle the queuing transactions in the source
shards, the newly arrived transactions in the destination shards,
and the account migration transactions.

Migration of Queuing Transactions in Source Shard: This
design aims at handling queuing transactions. Specifically, ac-
cording to the basic mechanism, the account in the source shard
will be removed, and the state will be cleared after the account
is migrated. However, if the migrated account has queuing
transactions that are waiting to be packaged in the source shard,
verifications for those transactions will fail. More seriously,
the failure of verification for those transactions will cause the
nonce to be discontinuous. As a result, all the verifications
of subsequent transactions sent by the migrated account will
fail, which results in a large throughput loss. To address this
problem, we propose the mechanism that requires the source
shard nodes to send the migrated accounts’ queuing transactions
to the destination shard after the account is migrated.

Postponement of Transaction Verification in Destination
Shard: This design aims at handling newly arrived transactions.
Specifically, the account migration takes time, during the ac-
count migration process, the verification for the newly arrived
transactions generated by the migrated account will fail, as
the account state in the destination shard is not updated (the
migration transaction is waiting to be packaged). Failing to
verify these new transactions leads to the nonce incoherence,
again causing significant throughput loss. Therefore, we design
to postpone their verification. As a result, the migrated accounts’
newly arrived transactions can be waited in the destination
shard’s queue and be executed after the account is moved.

Adjustment of Transaction Execution Priority in Destination
Shard: This design aims at handling account migration trans-
actions. Particularly, another significant problem of the basic
migration mechanism is the long waiting time for the account
migration transactions. Be noted that the account migration
transactions are the bottleneck of the operation, as all the queuing
and upcoming transactions of the migrating account rely on the
successful operation and package of the migration transaction.
Therefore, the long waiting time for an account migration trans-
action will inevitably prolong the migration process, reducing

throughput and increasing delay. The account migration trans-
action thus should be given the highest priority. Therefore, we
raise the execution priority of the account migration transac-
tion among all transactions. As a result, it can immediately be
executed once received.

With the above mechanisms, we overcome the challenges of
achieving account and transaction migration in real blockchain
sharding systems. Moreover, the proposed migration scheme
ensures security, and achieve an increase in throughput and a
reduction in transaction confirmation delay.

VI. ACCOUNT ALLOCATION

We now introduce our account allocation design, which aims
to make the transaction load in different shards balanced while
keeping the number of account migrations within a low level
to reduce the migration overhead. It consists of two parts:
transaction prediction and account allocation algorithm.

A. Transaction Prediction

To allocate accounts, the allocation service needs to periodi-
cally predict the number of transactions that will be produced by
different shards and accounts in every epoch. Various prediction
methods have been used for different purposes in blockchain
systems [21], [37]. In this article, the allocation service collects
historical transaction statistics (e.g., the number of transactions
of each account and digital currency prices), and uses a 2-layer
Long Short-Term Memory (LSTM) model [13] to predict the
number of transactions for each account in the following epochs.
Every layer of the LSTM model consists of 100 neurons, with a
dropout equal to 0.001. The loss function of LSTM is set to be
MSE.

Feasibility: Learning is computationally intensive and time-
consuming. To achieve a practical account allocation scheme,
we increase the prediction interval to estimate every epoch’s
number of transactions for the next N epochs at one prediction.
An example of learning results of 200 epochs transaction pre-
diction is shown in Fig. 5(a), in which the prediction is accurate
enough for the following account allocation (detailed discussion
in Section VII).

Besides, performing prediction for every account is infeasible
in practice, as millions of accounts are in a large-scale system
(Section VII). Additionally, most of the accounts only send a
few transactions, thus there is not enough data to support the
learning for accurate predictions. We find that a small portion
(<0.02%) of hot accounts send most (>50%) of the transactions
(see Fig. 5(b)) in practice. Seen in this light, we only focus
on the hot accounts for every shard and predict the transaction
generated by them in every epoch. For the other light accounts,
we integrate them as an aggregated account for each shard,
and predict a total number of transactions for the aggregated
account. Similarly, the allocation algorithm only focuses on hot
accounts to allocate and migrate. We will see that we can achieve
similar performance by doing this while dramatically reducing
the computational complexity.
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B. Account Allocation Algorithm

When obtaining the transaction prediction results, the allo-
cation service periodically determines the locations (shards)
for accounts and for their generated transactions in each small
epoch. We first formulate the account allocation problem and
show its NP-hardness. Then, we propose a heuristic algorithm
to solve the account allocation problem.

Problem Formulation: We state the account allocation prob-
lem as follows:

min

∑
i∈S [

∑
j∈A[(n

t
j + qt−1j ) · xt

i,j ]− l̄t]2

|S|
s.t.: nt

j , q
t−1
j ∈ {0, 1, 2, . . .}, ∀j ∈ A,

xt
i,j ∈ {0, 1}, ∀i ∈ S, ∀j ∈ A. (1)

The goal of the objective function is to minimize the variance
of the number of transactions between shards (i.e., improve load
balance) in epoch t. Specifically, for a given account j ∈ A,
where A is the set of accounts, nt

j represents the amount of
the predicted upcoming transactions of account j during the
upcoming epoch t. qt−1j means the amount of the queuing
transactions of account j remained in last epoch t− 1. For each
shard i ∈ S , where S is the set of shards, xt

i,j means whether
the account j is located in shard i in epoch t. xt

i,j = 1 means
the account j is located in shard i during epoch t, and xt

i,j = 0

otherwise. We define ltj = (nt
j + qt−1j ) as the load for account

j in epoch t. l̄t means the average number of transactions that
will be executed by each shard, calculated by:

l̄t =

∑
j∈Al

t
j

|S| . (2)

The account allocation problem can be reduced to the k-
partitioning problem, which is NP-hard [2]. Therefore, we
propose a heuristic account allocation algorithm with better
efficiency and acceptable performance.

Algorithm Design: Solving the account allocation problem
is time-consuming and extremely inefficient in real systems.
Therefore, when performing the account allocation algorithm,
the allocation service only decides the migration locations for
hot accounts. The rest of the accounts (aggregated account) are
kept fixed on each shard.

The intuition of the proposed account allocation algorithm
is to move as few accounts as possible to balance the load. In
each epoch, the algorithm iteratively moves hot account from
the heavy-loaded shard to the light-loaded shard to improve load
balance. The load balance level in epoch t is defined as:

Vt =

∑
j∈S [

∑
j∈Ahot

(ltj · xt
i,j) +mt

i − l̄t]2

|S| , (3)

which represents the variance of the transaction amounts be-
tween shards. The definition is similar as (1). However, Ahot

here is the set of hot accounts. mt
i represents the predicted

number of transactions for shard i generated by its aggre-
gated account (as mentioned in Section VI-A) during upcoming

Algorithm 1: Account Allocation Algorithm for Epoch t.

1: INPUT: S , Ahot, nt
j , qt−1j , ltj , xt−1

i,j , mt
i, l̄

t for all i, j
2: xt

i,j ← xt−1
i,j ,

Vt = Ṽt =
∑

i∈S [
∑

j∈Ahot
(ltj ·xt

i,j)+mt
i−l̄t]2

|S|
3: Sort each shard i ∈ S by its load

(
∑

j∈Ahot
(ltj · xt

i,j) +mt
i) in descending order, save to a

sorted shard list Sheavy , find the most heavy-loaded
shard iheavy and the most light-loaded shard ilight

4: Sort the accounts in iheavy by loads ltj in descending
order, save to a sorted account list Aheavy

5: while
∑

j∈Ahot
(ltj · xt

iheavy,j
) +mt

iheavy
> l̄t do

6: for j in Aheavy do
7: Move j from iheavy to ilight, update Ṽt

8: if Ṽt < Vt then
9: xt

ilight,j
← 1, xt

iheavy,j
← 0, Vt ← Ṽt

10: Update the load on each shard, update Sheavy ,
iheavy , ilight and Aheavy

11: go to line 5
12: end if
13: end for
14: Remove iheavy from Sheavy , update iheavy , ilight and

Aheavy

15: end while
16: OUTPUT: xt

i,j for all i, j

epoch t. In addition, l̄t here is calculated as:

l̄t =

∑
j∈Sm

t
i +

∑
j∈Ahot

ltj
|S| . (4)

The account allocation algorithm is shown in Algorithm 1.
According to the allocation results in last epoch t− 1 and the
prediction results in epoch t, the algorithm initializes the loads
and the load varianceVt (line 2). In each subsequent iteration, the
hottest account is selected from the most heavy-loaded shard and
its transactions are moved to the most light-loaded shard (line
3–7). Noting that based on Section V-B, the queuing transactions
qt−1j are also migrated. Meanwhile, the new variance Ṽt is
calculated (line 7). If the transaction load balance is improved
(line 8), the result of this migration will be retained, and next
iteration will be entered after updating the parameters (line
9–11). Otherwise, the account is not migrated and the algorithm
tries to move less hot account. If all the hot accounts in iheavy
are failed to improve Vt, the algorithm then tries to move hot
accounts in less heavy shard (line 14). The algorithm stops when
there is no load balance improvement for all the shards with loads
larger than average. It is worth noting that the algorithm will
converge and finish because that Vt decreases monotonically,
and only when Vt decreases should an account be migrated.

VII. IMPLEMENTATION AND EVALUATION

We implemented a prototype of LB-Chain based on
QuarkChain (an Ethereum-based sharding project). The system
is written in GO language with 3000+ lines of code, while
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the prediction algorithm is written in Python. Our system is
deployed on Amazon EC2 with r5.xlarge instances for shard-
ing nodes, r5.8xlarge instances for the allocation service, and
r5.24xlarge instances for clients. The allocation service con-
nected to several nodes in each shard via RPC in order to
communicate. We performed our experiment on up to 32 shards
using up to 256 sharding nodes distributed in different regions.
The nodes in the sharding network communicate via the gossip
protocol.

We evaluate the performance of our system by replaying
15 million historical Etheruem transactions (including normal
transfer transactions, as mentioned in Section II-D) sent by
more than 1.5 million accounts. For the transactions related to
smart contract, we consider how to handle them in future work.
Unless otherwise specified, we randomly selected three sets
of transactions (5 million continuous transactions in each set)
and showed the average results of them. The account migration
epoch t is set as 10 minutes. Additionally, we use a practical
setting where the end-to-end bandwidth was limited to 30 Mbps,
and we set a 500 transaction limit for each block and a target
of 10-second block creation interval as default (resulting a 50
TPS transaction processing capacity for each shard). The total
transaction sending rate is set as (50×number of shards) TPS.

Baselines: We benchmark LB-Chain against two baselines.
Random Allocation: Random Allocation represents the exist-

ing random transaction placement scheme (Section II-B) without
migration, where the accounts are placed randomly to a particu-
lar shard, and the transactions are placed according to the sender
account’s address.

Ideal Allocation: In Ideal Allocation, all transactions are
assumed to arrive at the very beginning. It solves the k-partition
problem for all the transactions based on all accounts to decide
the account allocation results. This algorithm is a theoretical
upper bound that our account allocation scheme can achieve.
This algorithm is infeasible in a real implementation, as it is
extremely time-consuming.

A. Prediction Results

Before the demonstrations of LB-Chain performance, we first
justify the feasibility of our prediction approach. Fig. 5(a) shows
an example of the prediction results for one top account. In the
predictions, we use the features in the last 50 epochs to predict
the number of transactions in the upcoming one epoch. In our
implementations, the predicted values are close to the actual
values, with an average of 11% errors. Another observation is
that single learning can estimate the results for multiple epochs
in the future (e.g., 200 epochs).

Fig. 5(b) illustrates the number of transactions generated by
top accounts in a randomly sampled set of transactions (over
8,000,000 transactions and 800,000 accounts). Results show that
less than 100 top accounts (out of 800,000) send more than
half of the transactions, a general case in Ethereum transaction
dataset. Therefore, the prediction method is reasonable and
feasible, in which the allocation service only needs to predict
a limited number of top accounts.

Fig. 6. Load balance comparison.

TABLE I
PERFORMANCE IMPROVEMENT

B. Load Balance

We now evaluate whether LB-Chain can balance the number
of transactions on different shards. Fig. 6(a) shows the load
distribution results for 32 shards. It is observed that in our LB-
Chain system, the number of transactions across different shards
was more evenly distributed than Random. For instance, the
heavy-loaded shard has 4× number of transactions higher than a
less-loaded shard in Random, whereas LB-Chain improves it to
0.5×. We noticed that our scheme still cannot achieve an ideally
completely balanced allocation. This is because the allocations
and migrations can only be conducted on the granularity of
account under the account model. There are several extremely
hot accounts who send more transactions than a single shard
can handle. Thus there are peaks appeared on the corresponding
shard where the extremely hot accounts are located. This inher-
ent problem cannot be solved by any other algorithms. We also
use the exponent parameter α in Zipf distribution to evaluate
the load balance level. As shown in Fig. 6(b) our migration
mechanism improved the imbalanced transaction distribution
and reduce α from 0.24 to 0.029 in 8 shard setting, (the smaller
the α, the more balanced the load).

C. Confirmation Latency and Fairness

The transaction load imbalance affects the transaction confir-
mation delay dramatically. In this experiment, we analyzed the
average delay over all accounts in Fig. 7(a), and the 95 percentile
account delay in Fig. 7(b). Together with the Table I, we see that
the transaction confirmation delay was reduced in all cases after
the migration, with a maximum reduction of nearly 90%.

We also analyzed the effect of the migration mechanism in
LB-Chain on fairness. In our experiment, we use Jain’s Fairness
Index [1] to measure the fairness of transaction confirmation
delay among different accounts. A larger index value (close to 1)
represents a fairer case. Fig. 7(c) shows that Jain’s Fairness Index
is improved by more than 60% in all cases by using LB-Chain.
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Fig. 7. Main performance evaluation results.

Besides, as shown in Fig. 7(d), 99% accounts wait less than
500 seconds in LB-Chain while in Random Allocation, 10%
accounts wait for more than 1,000 seconds. The results further
demonstrate the improvement of our migration mechanism on
the confirmation delay and fairness.

D. System Throughput

The transaction load imbalance also impacts the system
throughput, hence we evaluated the system TPS. As shown in
Fig. 7(e), our mechanism improves the system throughput over
10%, which is very close to that achieved by the ideal allocation.
Noting that the ideal allocation has very high computational
complexity, which is impossible to achieve in real-time in a
blockchain system. To make a more detailed analysis, the gap
between LB-Chain and the ideal solution is mainly due to
the following reasons. First, LB-Chain does not allocate for
all accounts but only allocates the hot accounts. Second, the
ideal scheme assumes no prediction error. Third, transactions
in LB-Chain arrive online, whereas in Ideal, transactions are
assumed to arrive simultaneously, so it does not waste time to
wait for the online transactions’ arrival.

E. Performance in Different Loads

We also evaluate the performance improvement of LB-Chain
under different load stresses. Intuitively, when all shards are
overloaded (or underloaded), load balance will never bring
any improvement. Therefore, it is worth investigating that in
which load range LB-Chain will bring performance gain. In the
experiment, we set 1× load as the default setting described at
the beginning of this section. We change the load by adjusting

TABLE II
TPS IMPROVEMENT RATIO (%) IN DIFFERENT LOADS

the transaction sending rate. The result in Table II shows that
LB-Chain can improve the throughput on a wide range of load
variety, although the improvement space becomes smaller when
the load diverged from the optimal load. Furthermore, as the load
imbalance problem becomes severer when the number of shard
increases, LB-Chain improves performance on a wider range of
load variety with the shard size expands.

VIII. ANALYSIS AND DISCUSSION

A. Security

We first analyze the security of LB-Chain. We mainly analyze
security during the account migration phase. For the rest parts of
our system, since the system is based on the existing blockchain
sharding system QuarkChain, we can achieve the same security
guarantees as they do.

Preliminary Knowledge of QuarkChain: QuarkChain uses
PoW (Proof of Work) consensus protocol and utilizes a beacon
shard and multiple common shards to jointly ensure system secu-
rity. Common shards are responsible for processing transactions
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(as described in the article), while the beacon shard assists in
the verification of cross-shard transactions (similar to Ethereum
2.0 [6]). Typically, 50% of the network-wide computing power is
allocated to the beacon shard, and the remaining 50% is allocated
to the common shards, resulting in the system being able to
tolerate attacks with less than 25% of malicious computing
power. Readers could refer to [3] for more details.

LB-Chain Guarantees Security During the Account Migration
Phase: We assume that the number of malicious nodes does not
exceed the maximum number that the consensus mechanism can
tolerate, which is reasonable. Under such assumption, LB-Chain
guarantees that: 1) The transactions will be correctly routed to
the corresponding shard by the honest nodes. 2) The account
migration transactions can be safely processed during account
migration. First, after receiving the account allocation results
broadcast by the allocation service, each node in the network
will update its local routing information (e.g., distributed hash
table, DHT). Therefore, when an account sends new transactions
into the network, the transactions will be correctly routed to new
corresponding shards. Second, the security of the account migra-
tion transaction is protected by the consensus mechanism. Only
the valid account migration transactions can pass the consensus
(Section V-A). However, the account migration transaction is
essentially a cross-shard transaction. Therefore, we need to
further analyze the security of cross-shard transactions to ensure
the security of the account migration transaction.

Security of Cross-Shard Transactions: Since LB-Chain is
developed based on QuarkChain, our cross-shard transaction
processing scheme is similar to QuarkChain. Specifically, a
cross-shard transaction (e.g., transfer fund from one account
to another, the account migration transaction belongs to this)
is split into two parts: fund withdraw and fund deposit. The
withdraw of the transaction sender is executed in the source
shard first. The security of this part is ensured by the consensus
scheme. Then, the beacon shard verifies the withdraw part of the
transaction (to finalize the withdraw part). After the verification
is passed, the deposit of the transaction receiver is sent to the
destination shard, and the destination shard executes the second
half of the transaction through the consensus mechanism. Since
the deposit part will be broadcast in the destination shards, there
will be an honest node to operate the deposit sooner or later.
Therefore, cross-shard transactions’ atomicity is guaranteed
(named eventual atomicity [3], [36]), hence ensuring the security
of cross-shard transactions.

B. Generality

Our System has Good Generality: First, our protocol can work
under different transaction distributions. In this article, we use
real Ethereum transaction data to evaluate the performance of
LB-Chain, and the evaluation results show great performance
gain. Ethereum is one of the most famous blockchain systems.
Many previous works [10], [36] also perform evaluations using
its transaction data. Therefore, the evaluation results measured
based on the Ethereum transaction data are credible. More
importantly, our protocol can be easily generalized to other
systems whose transaction distribution is similar to Ethereum

transaction data (i.e., a small number of hot accounts send a
large number of transactions). As for those situations where
account behavior and transaction distribution are different from
Ethereum transactions, our system can also be modified to adapt.
Specifically, in some cases where a small number of accounts
do not send a large number of transactions, our system can
aggregate multiple accounts together. Then our system treats the
aggregated accounts as a whole and performs prediction, alloca-
tion, and migration for them. Through aggregating accounts, we
can simulate the situation of a small number of accounts sending
a large number of transactions. Therefore, we can achieve a
higher prediction accuracy and a better load balancing result.

Second, our protocol can be generalized to different systems
with various consensus mechanisms. Similar to [3], [36], our
system is based on PoW consensus. Although our system is
based on the PoW consensus mechanism, it can also be gener-
alized to the BFT-type consensus systems with minor changes.
This is because our account migration protocol is orthogonal to
the consensus scheme design.

Third, our protocol can be generalized to consortium
blockchains. Our system is designed based on the public
blockchain. However, it can be easily extended to consortium
blockchains and private blockchains. The security and decen-
tralization considerations in the consortium blockchains are not
as important as the public blockchain. Whereas, the performance
requirements are relatively high in consortium blockchains. This
is actually suitable for our design, as our main goal is to improve
the performance of the blockchain system.

Finally, our mechanism could be extended to areas other than
cryptocurrency in the future. Our mechanism design is based on
the account model, in which each transaction is associated with
a specific account. Most of the operations in our mechanism are
also account-related (e.g., predicting the number of transactions
sent by accounts, migrating accounts). This makes it difficult for
our mechanism to be extended to the UTXO model. However,
unlike UTXO, which is limited to the application of cryp-
tocurrency, the account model has a broader application space
(e.g., IoT, digital healthcare, and edge computing). Although
our system is more suitable for payment scenarios because we
consider only simple transactions in this work, our future work
will address exactly the load balancing problem in the case
of having complex smart contract transactions. Therefore, our
system will have broader application scenarios in the future.

C. Feasibility

In this part, we discuss the feasibility of LB-Chain. The
feasibility analysis will be divided into two parts, the blockchain
sharding network part, and the allocation service part.

First, since our protocol is based on the existing mature
blockchain sharding system (QuarkChain), our system is highly
feasible in the blockchain sharding network part. Due to space
limitation, this article only described the proposed core scheme,
account migration. For example, for the problems of node
changes in the network and how nodes are allocated to shards, we
can use the Cuckoo rule and distributed randomness generation
scheme to solve them in the shard reconfiguration (e.g., once a
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day) stage [42]. Moreover, for security reasons, our system will
not perform account migrations during shard reconfiguration
phase. In this work, our protocol is built on QuarkChain, so
we adopt QuarkChain design for the rest of the system except
for the account migration part (e.g., bootstrapping, node joining
and leaving, shard reconfiguration, and cross-shard transaction
processing). Because our mechanism has strong generality, it can
also be used in many other sharding systems except QuarkChain.

Second, our protocol has high feasibility in the allocation
service part. In our design, we introduced the role of allocation
service (Section IV-B). As mentioned before, the allocation
service is a third-party entity. Many existing works have also
introduced the role of third-party entities in their design of
blockchain systems (e.g., ordering service, smart contract ser-
vice provider, interoperability service provider). Similar to them,
the allocation service can be designed to be either centralized or
decentralized [5], according to the specific situation. It can also
be designed to be trusted [5] or even untrusted [33]. Note that
due to the diversity of the allocation service described above, we
do not encourage the allocation service to be responsible for too
many tasks, such as requiring the allocation service to secure
the system. This is mainly because, too much control by a third
party can easily lead to a centralized system, which inherently
deviates from the decentralized nature of the blockchain. More
importantly, too much centralization can also tend to make the
system less secure. However, no matter what the design is, our
transaction prediction and account allocation are all centralized
algorithms, which will bring additional computational overhead
to the allocation service nodes running the algorithms. However,
in our design, we have fully considered this issue and reduced
the computational overhead as much as possible. As discussed
in Section VI-A, in our design, only a few accounts need to be
predicted each time. Besides, each prediction interval is quite
long (e.g., one day), and the allocation service can predict the
number of transactions in multiple epochs in one prediction. All
of the above mechanisms can reduce computational overhead
and provide higher feasibility for our system.

IX. CONCLUSION

Existing blockchain sharding suffers significant performance
degradation. However, little research has rigorously studied
the performance in blockchain sharding systems. In this article,
we first justified that transaction load imbalance is the dominant
factor in degrading system performance through measurement
studies. Based on the observation, we proposed LB-Chain. This
framework scales out sharding systems through account and
transaction migrations among shards, which guarantees trans-
action load balance between shards. We have implemented LB-
Chain based on QuarkChain. Extensive experiment results based
on EC2 deployment and real Ethereum transactions show that
LB-Chain dramatically outperforms the widely-adopted random
transaction placement strategy with more balanced load, less
delay, higher throughput, and better fairness among accounts.
Notably, LB-Chain reduces up to 90% confirmation latency,
increases the throughput by more than 10%, and improves the
fairness by more than 60%.
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