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Abstract—Radar spoofing attacks mislead victim radars by injecting false information. Successful attacks require prior knowledge of
the victim radar’s mode and parameters, and existing works obtain this critical information with expensive equipment, e.g.,
software-defined radio or spectrum analyzer. In this paper, we propose WASTON, a low-cost system for radar mode detection and
parameter estimation using commercial off-the-shelf (COTS) mmWave radars. To overcome the disadvantage of low sampling
frequency of COTS mmWave radars, we design two special local signals to detect frequency points and spectral shapes for radar
mode detection. We propose a novel parameter estimation algorithm to estimate frequency- and time-domain parameters for spoofing
different radars. We have implemented a prototype on the TI AWR1843 platform and conducted extensive experiments to evaluate the
performance of WASTON. Our experimental results demonstrate that WASTON achieves an accuracy of 100% for mode detection and

99% for parameter estimation. Furthermore, we demonstrate that the estimated parameters can be used to launch a successful

spoofing attack against the victim radar.

Index Terms—Spoofing Attack, mmWave Radar, Mode Detection, Parameter Estimation.

1 INTRODUCTION

Recent years have witnessed increasing applications of
radars [1], [2]. For instance, Continuous Wave (CW) and
Frequency Shift Keying (FSK) radars are commonly used
for detecting vital signs and estimating traffic speeds. Fre-
quency Modulated Continuous Wave (FMCW) radars are
used in human tracking and autonomous driving. However,
security issues regarding radar systems, especially spoofing
attacks, have become a growing concern [3], [4], [5]. A
spoofing attack injects false information into the victim
radar, e.g., creating a “ghost object”. This may pose severe
threats for autonomous vehicles, e.g., lure the victim vehicle
to mistakenly stall, brake, or change lanes [4], [6].

To launch a successful spoofing attack, the attacker must
have prior knowledge of the mode and parameters of the
victim radar. As shown in Fig. 1, a traffic light is equipped
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Fig. 1. To generate a spoofing signal, the attacker should have prior
knowledge of the victim radars’ mode and parameters.

with a CW radar A, while vehicles are equipped with
FMCW radars B and C. To spoof radar B, the attacker must
know its mode and parameters to tailor the spoofing signal
accordingly.

Current spoofing attack systems usually assume that
the attacker has prior knowledge of the default mode and
parameters of the victim radar from public resources [3], [4],
[5], [7]. However, these systems do not consider that users
can change the mode and parameters rather than using the
default setting [8]. When the user changes the mode and
parameters, these system will not work any more. Therefore
it is essential to detect the radar mode and parameters
timely.

On the other hands, some spoofing systems could access
the prior information by an expensive spectrogram or soft-
ware define radio (SDR) [4], [9], [10], [11], [12], [13]. These
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systems employ expensive devices to analyze the signal
pattern in radio-frequency (RF), which increases the cost to
launch a spoofing attack. To reduce the cost, we make the
first attempt to use commercial off-the-shelf (COTS) radar,
which is small-sized and low-priced, for critical informa-
tion inference to enable spoofing attacks. However, we are
facing a major challenge, since COTS radars only have a
low sampling rate that is inadequate to obtain fine-grained
spectrogram from RF signal for mode detection and param-
eter estimation of the victim radar. According to Nyquist’s
Theorem [14], to recover RF mmWave signals demodulated
to the baseband with a bandwidth of 4 GHz at 77-81 GHz,
a sampling rate of at least 8 GHz is required. However, the
sampling rates of COTS radars are usually limited (around
25 MHz), which only enables us to sample the intermediate
frequency (IF) signal rather than RF signal. Therefore, it is
essential to design special IF signal for mode detection and
parameter estimation. Besides, COTS radar has a limited
detection range, which is limited by the low pass filter. The
monostatic radar is not designed to detect other radars’
signals. How to estimate other radars’ information using
COTS radar becomes a major challenge.

In this paper, we present WASTON, an effective sys-
tem for critical information inference using low-cost COTS
radars to enable spoofing attacks. A COTS radar processes
the received signal by mixing it with a local signal (usually
the transmitted signal) and passes the mixed signal through
a low-pass filter. The information loss caused by the low-
pass filter makes it difficult for accurate information infer-
ences. To overcome the challenges of low sampling rate and
signal filtering, we carefully design local signals for mode
detection and parameter estimation of diverse victim radars.
For mode detection, we estimate the frequency points and
the spectral shape of the radar signal and feed them into a
classifier. We design two different local signals to identify
the frequency points and the spectral shape. The first local
signal is a sweep-frequency signal, which is used to help
calculate the frequency points in the IF signal. The other
local signal is a single-frequency signal, which shifts the IF
signal frequency to the baseband for analyzing the spectral
shape. Finally, we feed the frequency points and the spectral
shape to a neural network for mode detection. For parame-
ter estimation, we leverage the two local signals to calculate
the frequency and period of the radar signal. Specifically,
we shift the signal to the baseband by mixing it with our
designed local signals and propose a parameter estimation
algorithm using the IF signal to estimate radar parameters
in the frequency- and time- domain.

We summarize our contributions as follows.

e We propose a radar information inference system,
named WASTON, using a COTS radar to detect the
mode and estimate the parameter of a target radar,
which facilitates spoofing attacks.

o We carefully design local signals of the COTS radar
to achieve accurate mode detection and parameter
estimation.

e We conduct various experiments to verify the effec-
tiveness and robustness of WASTON. Our evaluation
results show that the mode detection accuracy can
reach 100%, and the relative error of parameter esti-

mation is less than 1%.

2 PRELIMINARIES

In this section, we first introduce commonly-used radars.
Then, we review radar spoofing attacks and state-of-the-art
works on radar information inference. Finally, we present
the threat model.

2.1 Radar Modes & Parameters

We focus on three commonly used radars, namely CW, FSK,
and FMCW radars.

2.1.1 CW Radar

CW radar transmits a continuous wave signal of a single
frequency s(t) with carrier frequency fo and initial phase ¢:

s(t) = eI?mlot+e, (1)

The receiver demodulates the signal to the baseband and
measures the velocity v based on the Doppler frequency
shift as

_

v = -c,
2fo

where f; is the Doppler frequency estimated by the target
radar, and c is the speed of light.

To spoof CW radars, the attacker should know the carrier
frequency fo and generates a misleading Doppler frequency
signal, which induces an incorrect velocity estimation ac-
cording to Eq. (2).

@

2.1.2 FSK Radar

FSK radar transmits two single-frequency signals alterna-

tively:
s(t) = {

where f,, fp are carrier frequencies, 0,, 0, are initial phases,
and T is the period. FSK radar can estimate both velocity
and range.

Suppose there is an object located at a distance dj, the
absolute distance between the target and the radar can be
calculated as follows:

627Tfat+0a
e27‘rfbt+91_~,

T
0<t< 3

; ®)
LT<t<T

(A, — AGy)
471—(fa - fb) ’

where Af,, Afy are the phase difference between the trans-
mitted signal and received signals at each frequency.

To spoof an FSK radar, the attacker should know the
radar’s two frequency points f,, fp, and the period T'. The
attacker can spoof the velocity measurement by adding
Doppler frequency shift to these two frequency points f,
and fp,. Because the range is calculated from the phase
difference, the attacker must also know the period T' to
synchronize with the signal.

do = (4)
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2.1.3 FMCW Radar

FMCW radar can measure the absolute distance and velocity
of a target with high resolution, so it is extensively used
in autonomous vehicles [15]. In the frequency domain, the
lowest and the highest frequencies in a chirp are designated
as fr, and fy, respectively, and their difference is the band-
width B = fg — fr. In the time domain, the Sweep Time
Ts indicates how long the radar will take to sweep from fr,
to fr, while the Chirp Idle Time Ty indicates how long the
radar will be idle while waiting for the received signal. The
chirp period T is composed of the Sweep Time T's and the
Chirp Idle Time Ty, Tc = Ts + T7. The transmitted signal of
an FMCW radar is
JERfL+EEE)

s(t)—{ € 0

Suppose that there is an object at distance d; from the
radar. Once the receiver receives the signal, it dechirps the
received signal with the transmitted signal to obtain the IF

signal y(1):

0<t<Tg, (5)
Ts <t <Tc.

y(t) =r(t) - s(t) = Y a;e? ), ©6)

where frequency f is related to the time delay 7;, f =
—27ST;. Fast Fourier Transform (FFT) of the IF signal can
be used to get the spectrum and calculate the frequency. We
can estimate the distance by d; = ¢7;/2.

In FMCW radars, a frame is composed of a certain
number of continuous chirps and a frame idle. We should
estimate the frame period T and the frame idle time T
[15].

It is necessary to estimate the frequencies fr, fm, the
chirp period T¢, the sweep time T, the frame period Tr
and the frame idle time T»; of an FMCW radar to spoof it.

As shown in Fig. 2(a), if the spoofing signal uses different
parameters from victim radar, its frequency components
will spread to all distances in the range profile, so such
an attack exhibits an increase in the noise floor rather than
spoofing attack. To stably and accurately spoof the victim
radar, the attack must transmit a spoofing signal with the
same parameters as the victim radar, and introduce the
“ghost” target by time delay, as is shown in Fig. 2(b). This
study emphasizes the importance of parameter estimation
in spoofing attacks.

2.2 Radar Spoofing Attacks

Recent studies have demonstrated various spoofing attacks
targeting CW and FMCW radars, which can pose serious
threats. We summarize and compare these attacks in Table 1.
Rodriguez et al. [3] demonstrated the ability to mimic a user
by adding a “vital Doppler” to a Doppler radar. Sun et al.
[4] implemented a wireless FMCW radar spoofing system
using an SDR. Nallabolu et al. [5] designed a frequency shift
mixer to launch a spoofing attack. Nashimoto et al. [7] used
a cable to connect the attacker and the victim radar to launch
a spoofing attack. However, they assume that the attacker
has prior knowledge on the type of mmWave radar and
parameters including the waveform parameters (frequency
sweep bandwidth and slope), the number of chirp signals
used in a frame, and the duty cycle of the radar frame. Chen
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Time Time
Amplitude IF signal Amplitude IF signal
l \ ‘
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spoofing spoofing

Fig. 2. Parameter estimation necessity: only when the spoofing signal
has the same parameters as the radar signal, can the attacker create
an “ghost” object and launch a spoofing attack successfully.

et.al. [16] proposed to use a passive tag to spoof a radar.
However, this method requires the attack to get the sensing
signal information of the victim mmWave sensor from open
public sources.

It is worth noting that all existing spoofing attacks
assume that certain critical information, in particular, the
mode and parameters of the victim radar, are known.
However, the attacker may not have access to the critical
information or the user may change the parameters of radar
from time to time. To address this issue, we design WASTON
to estimate the important information required for radar
spoofing attacks.

2.3 Radar Information Inference

We focus on mode detection and parameter estimation of
radar systems, which are critical for radar spoofing attacks.

2.3.1 Mode Detection

Previous works mainly utilized spectrum analyzers or SDR
to detect radar modes based on handcrafted features of
radar waveforms, e.g., complex envelope [17], spectral cor-
relation density [18], and auto-correlation function [19].
Time-frequency features of radar signals can be extracted
via short-time Fourier transform (STFT) [20], Wigner-Ville
distribution (WVD) [21], and Choi Williams distribution
(CWD) [22] for radar detection. However, existing methods
require high sampling rates for feature extraction, which
cannot be achieved by COTS mmWave radars.

2.3.2 Parameter Estimation

Previous research on radar parameter estimation was
mostly verified by simulation but not on COTS radars.
The maximum likelihood method [23] performs the best
for estimating parameters of chirp signal, but needs time-
consuming two-dimensional search in both frequency and
time domain. Liu et al. [24] proposed QPF-FRFT to estimate
radar parameters with one-dimensional search to reduce
time complexity. Liu et al. [13] adopted Otsu-ratio to esti-
mate parameters with higher accuracy. Nonetheless, their
performance has not been validated on COTS radars.
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TABLE 1
A comparison of existing mmWave attack approaches.

Work Attack Method Cost Wireless Stealthiness | Deployment
Nashimoto et al. [7] | RF modulator-based | Medium (> $100) | No (Cable-connected) No Difficult
Sun et al. [4] RF modulator-based High (> $800) Yes No Difficult
Nallabolu et al. [5] RF modulator-based High (> $1300) Yes No Difficult
Chen et.al. [16] Meta-material-based Low ( $10) Yes Yes Easy
2.4 Threat Model N Radar signal <>
We define the objective, knowledge, and capability of the - .“ Low pass fier ADC IF signal
attacker. e T
Attacker’s objective. The attacker aims to infer the

mode (CW/FSK/FMCW) of the victim radar and the critical Local signal

parameters for spoofing attacks. For CW radar, we need
to estimate its frequency information. For FSK radar, we
need to estimate its frequency and period information. For
FMCW radar, we need to estimate its chirp and frame
parameter information. With this critical information, the
attack can spoof the range and speed sensing measurements
of the victim radar.

Attacker’s knowledge. The attacker does not have access
to any prior knowledge of the mode or parameters of the
victim radar.

Attacker’s capability. The attacker can place a mmWave
radar with the field-of-view (FoV) of the victim radar, but
not any large equipment (e.g., SDR, spectrum analyzer).

Attack Scenario. Autonomous vehicles are equipped
with FMCW radars to detect the range and velocity of mul-
tiple targets. Given the parameters estimated by WASTON,
we can create a “ghost” object with arbitrary range and
speed for the victim radar. Then the autonomous vehicles
will stall and even cause traffic jams.

3 WASTON: DETAILED DESIGN

We propose WASTON to infer critical information of the
victim radar using COTS radars to enable spoofing attacks.
The main challenge is that COTS radars have a low sam-
pling rate, typically 25 MHz, which is not enough to sample
the RF signal directly to get the information. Besides, the
COTS radars are designed primarily for transmission but
not infering information of a certain radar.

To address these challenges, we exploit the potential of
COTS radar by designing different local signals. As shown
in Fig. 3, the COTS mmWave radar mixes the radar signal
with a local signal, typically the transmitted signal, to shift
the frequency in the RF band to the baseband. To ensure
non-destructive sampling of the IF signal after mixing, a low
pass filter with a cutoff frequency of f;/2 is often utilized
[14]. However, the filtering process limits the bandwidth of
the IF signal, leading to frequency loss if the radar signal
frequency deviates significantly from that of the local signal.
We design different local signals to mix with the radar
signal, facilitating the recovery of critical information from
the IF signal.

We illustrate our system architecture in Fig. 4, which
comprises two fundamental components:

Mode detection. WASTON detects radar modes based
on their frequency points and spectral shape. To obtain
this critical information, we have designed two distinct

Fig. 3. COTS radar processing flow.
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local signals, one to acquire the frequency points and the
other to detect the spectral shape. Subsequently, we feed the
obtained frequency points and spectral shape into a neural
network for accurate radar mode classification.

Parameter estimation. WASTON estimates radar param-
eters based on the frequency and period of IF signals. We
devise a customized parameter estimation algorithm for
different radar modes. In the frequency domain, we estimate
fine-grained frequency points for CW/FSK radar and the
frequency range for FMCW radar. In the time domain, we
estimate the period for FSK radar and chirp parameters
and frame parameters for FMCW radar. Note that CW
radar transmits signals continuously, thus, no time domain
parameter estimation is necessary.

3.1 Local Signal Design

The most important thing in our system is to design local
signals facilitating the recovery of critical information from
the IF signal. We should detect the frequency, period, and
spectral shape of the radar signal.

To detect the frequency of the radar signal, we design a
sweep-frequency local signal whose frequency f; covers the
full bandwidth, f; = S -t + fi, where S is the frequency
slope, and f}, is the start frequency. As illustrated in Fig. 5, if
the radar signal is a single-frequency signal with frequency
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Fig. 5. We use a sweep-frequency signal as the local signal to detect the
frequency point of the received radar signal.
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Fig. 6. We use a single-frequency signal as the local signal to detect the
spectral shape of the received radar signal.

fo, we can mix the radar signal with the sweep-frequency
signal as the local signal. If |f; — fo| > fs/2, the low pass
filter will filter out the frequency component, and we cannot
observe it in the IF signal. Since f; is typically a small value,
we can detect a peak in the time domain of the IF signal,
which signifies that at that particular time, |f; — fo| < fs/2.
By determining the peak location t,, we can estimate the
frequency point fo = S - tp + fr-

While the sweep-frequency local signal helps rapidly de-
tect the frequency component of the radar signal, it can also
obscure the spectral shape. Hence, it can be challenging to
determine whether the frequency is continuous or discrete.

To detect the spectral shape, we design a single-
frequency local signal whose frequency lies within the
bandwidth of the radar signal. As depicted in Fig. 6, if the
radar signal has continuous frequencies f;, we can use the
single-frequency local signal with frequency fj to shift the
frequency from the RF band to the baseband. The resulting
IF signal can be represented as

TF(t) = @ (fr=fo)t), @)

In the frequency domain, all frequency components are
reduced by fo, thereby preserving the spectral shape. Al-
though the low pass filter limits the bandwidth, we can still
observe the spectral shape and whether it is continuous or
discrete. Mixing with the single-frequency local signal, the
IF signal preserves the period of the radar signal, enabling
parameter estimation in the time domain.

As a result, COTS radar could sample and analyze the
victim radar’s signal using these two local signals.
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Fig. 8. CNN-based radar mode classifier.

3.2 Mode Detection

Radar mode is detected according to frequency points and
spectral shape.

3.2.1 Frequency Point Detection

Frequency points are a crucial differentiating factor among
various radar modes. For instance, CW radar transmits a
single-frequency signal, and therefore, we can detect only
one frequency point in the IF signal. FSK radar transmits a
switched-frequency signal. By dechirping the radar signal
with our designed sweep-frequency local signal, we can
detect two discrete frequency points in the IF signal.

In contrast, FMCW radar transmits a continuous
frequency-modulated signal, with the frequency varying
with time. Hence, we need to detect the spectral shape
to differentiate between a continuous frequency (FMCW)
signal and a discrete frequency (CW/FSK) signal.

3.2.2 Continuous/Discrete Frequency Detection

To differentiate between a continuous and a discrete fre-
quency signal, we should detect the spectral shape of the
signal. We use a sweep-frequency local signal to detect at
least one frequency point within the bandwidth of the radar
signal. Then, using this frequency point, we design a single-
frequency local signal to shift the frequency band from the
mmWave band to the baseband. The IF signal preserves the
spectral shape of the radar signal.

As illustrated in Fig. 7, an FMCW signal has a continuous
frequency, which results in a wideband spectrum in the
IF signal. In contrast, a CW or FSK signal has discrete
frequencies, resulting in a narrowband spectrum in the IF
signal. Based on the spectral shape of the IF signal, we can
differentiate between a continuous and a discrete frequency
signal.
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3.2.3 Mode Detection

To achieve accurate mode detection, we use a conventional
neural network (CNN) for the following considerations:
CNNs automatically learn relevant features from the data,
leveraging their ability to capture temporal patterns through
convolutional operations, leading to more effective feature
extraction. Additionally, CNNs exhibit parameter sharing
and translational invariance properties, enabling efficient
processing of temporal data while reducing overfitting risks.
The model architecture is depicted in Fig. 8. The detected
frequency points and spectral shape are used as inputs
to the CNN. The classifier comprises four convolutional
layers, each followed by a Rectified Linear Unit (ReLU) and
a max pooling layer. The fully-connected layer computes
the probability of the radar mode. The SoftMax function is
applied to predict the radar mode.

3.3 Parameter Estimation

We estimate frequency-domain and time-domain parame-
ters.

3.3.1 Frequency-Domain Parameter Estimation

CW radars and FSK radars both transmit a discrete-
frequency signal, while FMCW radars transmits a
continuous-frequency signal. Therefore, for CW and FSK
radars, we should estimate its frequency points. For FMCW
radars, we should estimate a working frequency range
instead of a specific frequency point.

Frequency point estimation. To estimate the carrier
frequency fo for CW radar, the coarse estimation provided
by the sweep-frequency local signal is not sufficient, since
a peak in an IF signal indicates only |f; — fo| < fs/2 but
not fi = fo. Therefore, a fine-grained frequency estimation
is necessary.

We design a single-frequency signal whose frequency
fo is the estimated result using the sweep-frequency local
signal. By mixing this signal with the radar signal, the
difference in frequency Af between f, and fo can be
determined, allowing for a more accurate estimation of the
carrier frequency, fo = fo + Af. Similarly, for FSK radar,
fine-grained frequency points f, and f;, can be calculated.
We need two iterations to achieve fine-grained frequency
estimation for each frequency point. Therefore the time cost
for frequency point estimation is approximately two chirp
periods.

Frequency range estimation. To estimate the frequency
range of an FMCW radar, we propose a binary search
algorithm to approximate the low frequency f; and the
high frequency fr. We present our binary search algorithm
in Algorithm 1. Using a single frequency local signal of
frequency f., we can detect whether a frequency component
fc exists in the bandwidth of the victim radar. The whole
bandwidth fy,in and fy,4e are known according to spectrum
regulations. For example, automotive radars works from
76GHz to 81GHz according to Federal Communications
Commission (FCC) regulation. Therefore, we can set fi,,;n
and frqa as the upper and lower bounds specified by FCC.
We define the expected frequency resolution as A f.¢s.

We first set both the lower frequency fr and higher
frequency fg to the frequency component f. firstly (line

Algorithm 1 Binary Search Algorithm

Input: Frequency found using a sweep local signal: f.; Fre-
quency bound of the bandwidth: fy,in and fpee; The
expected frequency resolution: A f.¢s

Output: The frequency bound of the target: fr, fu;

L fL « fo fo < fe

2: while |fr, — fiin| > Afres do

3: fom fL+gmm

4:  if Peak detected at frequency fiemp then
5: fL <~ fm

6: else

7: fmzn < fm

8: end if

9: end while
10: while |fraz — fH| > Afres do
11: fn — fH+2maa:
12:  if Peak detected at frequency ficm,p then
13: fH — fn
14: else
15: fmam % fn
16:  end if
17: end while

=
o]

. return fr, fo

1). Then binary search algorithm is performed for lower fre-
quency estimation (lines 2-9) and higher frequency estima-
tion (lines 10-16), respectively. Take lower frequency estima-
tion as an example. If the frequency resolution |fr, — fiin|
does not reach the required value Af..; (line 2), we it-
eratively calculate the middle frequency f,, = %
(line 3). We check whether the middle frequency f,, is
within or outside the frequency range of the victim radar
by detecting whether peaks can be found in the IF signal
(line 4). If the middle frequency is within the frequency
range, we assign it to the upper bound f, (line 5); otherwise,
we assign it to the lower band f,,;, (line 7). The higher
frequency is estimated in the way. The search terminates if
the error is within a specified frequency resolution. We need
about 1og2(W) iterations to achieve fine-grained
frequency range estimation with resolution A f,,. Therefore
the time cost for frequency range estimation is dozens of
chirp duration, which is around several ms.

3.3.2 Time-domain Parameter Estimation

CW radar transmits signals continuously, so no time-
domain parameters need to be estimated for CW radar. FSK
radar transmits two discrete frequencies alternatively, and
we should estimate the period T for FSK radar. For FMCW
radar, we need to estimate the chirp parameters, including
the chirp period T, the sweep time T, and the frame
parameters T'r and 1. For time-domain parameter estima-
tion, the iteration depends on the time-domain parameter
of the victim radar. Generally, the time cost for time-domain
parameter estimation is around dozens of ms.

Period estimation. To estimate the period T' for FSK
radar, we leverage the periodicity of the FSK signal. We set
the local signal as a single-frequency signal of frequency
fa, which is the estimated result of f, using frequency
point estimation in Section 3.3.1, we mix the local signal
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the period information of the FSK. Specifically, as shown
in Fig. 9(a), when the FSK radar works at f,, due to the
frequency estimation inaccuracy and the frequency offset
caused by the difference between the detecting radar and
victim radar’s oscilators, we can observe a sine wave in the
mixed signal. When the FSK radar works at f;, considering
the difference between f, and f; is usually larger than f/2,
the mixed signal will be filtered by the anti-alias low-pass
filter, therefore no frequency components are left in the
baseband. This enables us to estimate the period T of the
FSK signal as the interval between two baseband signals in
the IF signal.

Chirp estimation. A chirp is composed of a sweep-
frequency signal of sweep time Ty and an idle time 77. We
should estimate the chirp period T and the sweep time Ts.

T¢ estimation. To estimate the chirp period Ty, we
use a single-frequency local signal whose frequency fo
is estimated using a sweep-frequency signal, and observe
multiple peaks in the IF signal after mixing with the single-
frequency signal, as shown in Fig. 9(b). The interval between

Kalman
Filter

(b) Chirp period estimation in FMCW radar (c) Sweep time estimation in FMCW radar

two adjacent peaks in the IF signal indicates the chirp period
Tc.

Ts estimation. Given the f;, and fy estimated in Section
3.3.1, we generate a local switched-frequency signal with the
low frequency fr, and the high frequency fx to estimate the
sweep time T's. As shown in Fig. 9(c), the interval between
two timestamps t4; and tg42 in the IF signal is the sweep

time Ty, and the frequency slope S' can be calculated as

S — f HT*f L .
S
Frame estimation. For FMCW radar, we also need to

estimate the frame structure, including the frame period
Tr and the frame idle time Tr;. As shown in Fig. 10, we
use a single-frequency local signal to observe the intervals
between two adjacent peaks in the IF signal, which can be
either the chirp period T or T, = Tc + T'r;. We can easily
differentiate them as T}, should be larger than T¢. The
frame idle time Tr; can be calculated as Tr; = T, — T¢.
By segmenting the time domain IF signal into frames, the
detector can estimate the frame period T by calculating
the interval between two adjacent frames.

3.4 Multi-Radar Separation

Multiple radars pose a challenge for identifying radar
modes and estimating parameters. Signals from different
sources are mixed. As a result, it is necessary to separate
each signal.

To separate each signal comes from different sources,
the observation is that these signal usually comes from a
different angle of arrival (AoA). Multiple radar signals can
be differentiated by their unique AoA, which allows these
radars to be separated.

Specifically, we measure AoA using a MIMO radar.
Four antennas can receive each path simultaneously, and
their phase difference indicates the AoA. Multiple Signal
Classification (MUSIC) is used to estimate the AoA for each
peak [25]. To provide a more accurate AoA when the radar
is moving, we use the Kalman Filter [26]. We further cluster
each peak based on its AoA for multi-radar separation.
Radar mode detection and parameter estimation are carried
out separately.
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4 EVALUATION

In this section, we report the results of the experimental
evaluation of WASTON. In particular, we present the de-
tailed setup, the overall performance, the robustness, and
a case study to launch a spoofing attack using our estimated
parameters.

4.1 Experimental Setup

Hardware. We use the TI AWR1843 [27] (Fig. 12(a)) as the
detector for radar classification and parameter estimation,
and another TI AWR1843 demo board is used as the target
radar. Only one receiving antenna on the detector is enabled.
To ensure that the target radar is unaware of the detecting
radar, we disable all transmission antennas on the detec-
tor. This can be accomplished using the mmWave Studio
software. The target radar is set to be in three different
modes: CW/FSK/FMCW by setting the frequency slope to
be zero/switched/continuous respectively. The parameters
of our detecting radar are listed in Table 2.

Software. We use mmWave Studio and mmWave SDK
to configure mmWave sensor modules. We implement our
signal processing and parameter estimation algorithm using
MATLAB. To classify the radar mode, our CNN-based clas-
sifier is implemented in PyTorch 1.10.0 using CUDA 11.2.
The CNN is trained on a dataset consisting of 2400 samples
collected from different environments. The training dataset
consists of a total of 54 minutes of data.

(c) Scenario 2: conference room (d) Scenario 3: sidewalk

Averaged Frequency Error

500 250 125 62.5 31.25 15.6250 7.8125

Frequency Resolution (MHz)

Fig. 14. Frequency range error of FMCW radar: Frequency error vs.
Resolution requirement.

TABLE 2
Configuration of the detecting mmWave radar.

Parameter

Single frequency

Sweep frequency

Sweep time (us)
Chirp idle time (us)

Sampling rate (ksps)

ADC samples
Frame period (ms)

Number of chirps in a frame

420

10
10,000
4,096
57

128

200

10
20,000
3,900
5

23

4.2 Performance of Radar Classification

We place the target radar (victim radar) within the field-of-
view (FoV) of the detecting radar (attacker). The transmis-
sion power of the target radar is set to 12 dBm. The clas-
sification accuracy holds at 100% when the detecting radar
is within 60 meters of the target radar. The classification
accuracy drops with increasing distance since the received
power decreases when the distance increases.

4.3 Performance of Parameter Estimation

We use absolute error and relative error as metrics for eval-
uating parameter estimation. The detector is deployed at
a distance of 8 m from the target radar. The transmission
power of the target radar is set to 12 dBm.

4.3.1 Frequency Domain Parameter Estimation

In the frequency domain, we evaluate the performance of
frequency point calculation for CW/FSK radar and fre-
quency range calculation for FMCW radar.
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Fig. 17. Absolute error of frequency slope S for robustness evaluation.

Frequency point evaluation result. This experiment
aims to assess the accuracy of frequency point estimation.
We configure eight frequency points in CW modes and FSK
modes to be 77 GHz, 77.2 GHz, 77.5 GHz, 77.8 GHz, 78 GHz,
78.5 GHz, 79 GHz, and 80 GHz. The cumulative distribution
function (CDF) of the absolute error for frequency point
calculation is shown in Fig. 13(a). Based on our experiment,
90% of absolute errors are within 52.8 kHz, and its corre-
sponding relative errors are within 0.0065%. The Hamming
window and sampling rate limit the theoretical frequency
resolution [28]. Our setting has a theoretical frequency reso-
lution of approximately 40 kHz.

Frequency range evaluation result. We set the f, ranged
from 77 GHz to 80 GHz, and fy ranged from 78 GHz to
81 GHz. As shown in Fig. 14, when we set the required
resolution to be 7.8 MHz, the average frequency error is 2.09
MHz, which is about 0.0026% relative error. About seven
iterations are performed in the Algorithm 1.

4.3.2 Time Domain Parameter Estimation

In the time domain, we evaluate the performance of period
calculation for FSK radar, the chirp parameter, and the frame

Arrival angle No activity Human activity

(c) Impact of arrival angles. (d) Impact of human activity.

parameter calculation for FMCW radar.

Period evaluation result. To estimate the period 71" of
FSK radar, we fix the frequency points and change the
period T' from 100 ps to 2100 ps, stepping by 500 ps. The
CDF of absolute error for period estimation is shown in
Fig. 13(b): 90% of absolute errors are within 0.44 ps and
its corresponding relative errors are within 0.11%.

Chirp parameter evaluation result. We set the chirp
period T to be ranged from 350 ps to 1000 ps, separated
by 50 ps. As shown in Fig. 15(a) and Fig. 16(a), 90% of
the absolute errors of Ty are within 0.0055 ps, and its
corresponding relative errors are within 0.00345%. We set
Ts ranging from 50 ps to 300 ps. As shown in Fig. 15(b) and
Fig. 16(b), 90% of the absolute errors of the frequency slope
S are within 0.083 MHz/ps, and its corresponding relative
errors are within 0.76%. The estimation is accurate enough
to spoof the target radar, which we will show in the case
study.

Frame parameter evaluation result. We set the frame
period of the target radar from 40 ms to 200 ms with a 10 ms
step and set the chirp number to 64, 96, and 128 respectively.
Fig. 15(c) and Fig. 16(c) indicates that 90% of the absolute
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errors of the frame idle time T are within 1.92 ps and its
corresponding relative errors are within 0.0024%. Fig. 15(d)
and Fig. 16(d) shows that 90% of the absolute errors of the
frame period Tr are within 1.33 ps and its corresponding
relative errors are within 0.0015%.

4.4 Robustness

To evaluate the robustness of WASTON, we conduct vari-
ous experiments under different conditions. We choose the
frequency slope S as a representative parameter.

Impact of environment. To evaluate the robustness of
WASTON under different environments, we conduct ex-
periments in three different scenarios: an open space, a
conference room, and a sidewalk environment, as shown in
Fig. 12. WASTON achieves 100% accuracy in radar classifica-
tion under all three environments. In terms of parameter
estimation, the results show that errors remained within
1% for all three environments (Fig. 17(a)), demonstrating
its robustness against a variety of circumstances.

Impact of distance. With increasing distance between
target radar and detecting radar, the received signal strength
and SNR decrease, which affects the performance of
WASTON. In this experiment, we assess the robustness of
WASTON across various distances between the detecting
radar and a target radar. In particular, we adjust the distance
from 10 m to 70 m at a fixed angle of 0°. The result
shows that the radar classification accuracy is 100% when
the distance is within 50 meters. The accuracy decreases to
96.875% at 60 meters and 92.766% at 70 meters. The error
in frequency slope estimation does not exceed 0.07 MHz/ps
within 70 meters (Fig. 17(b)), which is sufficient to spoof
another FMCW radar, demonstrating that WASTON is highly
resistant to distance.

Impact of direction. To evaluate the robustness of
WASTON under various arrival angles, we adjust the target
radar at 15°, 30° 45° and 60°0f detecting radar. In all
cases, the classification accuracy holds at 100 %. Fig. 17(c)
shows that the error in frequency slope estimation increases
slightly with the angle, from 0.02 MHz/ps to 0.07 MHz/ps,
with a relative error of 0.7% sufficient for spoofing. There-
fore, we conclude that the parameter estimation of WASTON
is robust in various directions.

Impact of human activity. We ask a person to walk
around the room to evaluate the robustness of human ac-
tivity. With human activity, classification accuracy remains
100%. Fig. 17(d) illustrates that parameter estimation errors
with human activity are comparable with errors when there
is no human activity.

Impact of radar type. To evaluate the robustness of
WASTON under different combinations of attack radars and
victim radars, we conduct extensive experiments with an-
other COST radar uRAD Automotive [29] with frequency
range 76 to 81 GHz. We use AWRI1843 as the attack
radar and uRAD Automotive as the victim radar. WASTON
achieves 100% accuracy in radar classification. In terms of
parameter estimation, the results show a relative error of
0.5%. The results demonstrate its robustness against differ-
ent combinations of radars targeted and attacking.
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4.5 Multiple Radars

As shown in Fig. 18, in this experiment, we placed four
radars randomly in an open area, each transmitting a unique
signal pattern. A detector is placed to classify their radar
mode and estimate their parameters.

Fig. 19 illustrates an example of the AoA estimation
result. Based on their unique AoAs, their signal is separated
and radar modes and parameters are estimated separately.
The overall result is shown in Table 3. The result shows that
with the increasing number of radars, the performance of
parameter estimation will drop a little (e.g. the error of fre-
quency slope estimation will increase from 0.066 MHz /s to
0.103 MHz/ps). However, it still provides us with accurate
parameter measurements to launch a spoofing attack. We
will use the maximum error measured in our evaluation to
show a case study.

4.6 Moving Scenario

We examine the performance of WASTON in a dynamic sce-
nario when the victim radar is moving toward the attacker.
We deploy radars on two moving cars, as shown in Fig.
20, to evaluate the performance of radar classification and
parameter estimation when cars are moving.

Table 4 summarizes the performance comparison under
the moving scenario and static scenario. The results indicate
the robustness of WASTON under the moving scenario. Be-
cause the Doppler frequency introduced by the movement
is only approximately v/c - f. ~ 5.1kHz at a speed of
20 m/s, which is negligible for parameter estimation. The
results prove WASTON has the capability to achieve radar
classification and parameter estimation when the radar is
moving.

5 CASE STUDY

To verify the effectiveness of the estimated parameters in a
spoofing attack, we spoof the target radar by generating a
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TABLE 3
Performance for multiple radars working simultaneously.
Number of radars | 2 3 4
T error (ns) 431 5.75 8.03
T error (ps) 0.49 0.52 0.81
S error (MHz/us) | 0.066 | 0.071 | 0.103

W

|

Fig. 20. Moving radar scenario.

spoofing signal based on the estimated parameters with
maximum error in the evaluation. To ensure synchroniza-
tion between the attacker and the victim radar, we set the
detecting radar (AWR1843) to the hardware trigger mode
and use a RIGOL DG952 signal generator as an external
clock for synchronization, which is usually deployed in the
existing spoofing system [7].

5.1 CW Radar

A CW radar can detect the velocity of the object. We can
spoof the CW radar by transmitting another signal to gener-
ate a “false” speed. In our experiment, there are no moving
objects. Initially, the velocity measured by the victim radar
shows no moving objects, as shown in Fig. 21(a). We then
transmit a spoofing signal with a certain carrier frequency
shift. The victim radar then measures a speed of 63.08 m/s,
as shown in Fig. 21(b). This speed has exceeded the vehicle’s
speed limit [30], and the victim radar would falsely indicate
that the vehicle is speeding.

5.2 FSK Radar

FSK radars can detect the absolute distance. Given the pa-
rameters estimated by WASTON, we can launch a spoofing
attack by manipulating the phase difference of the received
signal to deceive the victim radar into detecting false ab-
solute distances. In our experiment, a person is walking in
front of the victim radar within a distance of 1.2 meters.
As shown in Fig. 22(a), the FSK radar accurately detects
the person’s position. Then the attack radar generates a
spoofing signal by adding a phase delay on the signal of
detected frequency. As shown in Fig. 22(b), the spoofing
signal successfully deceives the victim radar into detecting
false distances.
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TABLE 4
Performance comparison under static scenario and moving scenario.

Mean error Static | Moving
Coarse frequency (MHz) | 5.0 52

Fine frequency (kHz) 52.8 58.1

Te (ns) 2.5 3.1

Tr (ps) 0.37 0.51

S (MHz/ps) 0.083 | 0.085

w
w
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Fig. 21. Spoofing result of CW radar.

5.3 FMCW Radar

FMCW radars can detect the range and velocity of multiple
targets. Given the parameters estimated by WASTON, we
generate a spoofing signal by adding a time delay to launch
a spoofing attack, which aims to create a “ghost” object for
the victim radar.

The parameters of victim radar are listed in Table 5. A
person is walking at 8 meters from the victim radar with a
speed of 3 m/s. As shown in Fig. 23, both the person and
a “ghost” obstacle are successfully detected. The “ghost”
obstacle is detected at a distance of 18 meters from the victim
radar.

Such a spoofing attack can introduce more severe at-
tacks for autonomous vehicles, such as stalling attacks, hard
braking attacks, and lane-changing attacks [4]. For example,
there is no obstacle in front of the AV, but the mmWave radar
detected a “ghost” object created by the spoofing signal.
Then the AV will stall and even cause traffic jams.

6 COUNTERMEASURE

In this section, we present defense mechanisms against
mode and parameter estimation from both radar coordina-
tion and victim awareness perspectives.

Existing spoofing attacks include active spoofing, which
actively transmits a spoofing signal [4], [5] and passive
spoofing, which passively leverages a tag to launch the
attack [16]. All of them require knowing the victim radar’s
mode and parameters, so they can transmit a specific spoof-
ing signal or design a specific tag to launch the attack.

Radar coordination: Active spoofing can be regarded as
an radar-to-radar(R2R) interference. Thus the radar coordi-
nation system that mitigates R2R interference can be used
as one of the defense strategies [31], [32]. In this case, even
though WASTON provides a radar mode classification and
parameter estimation system, the radar coordination system
could coordinate the victim radar to adjust its parameter
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Fig. 23. Spoofing result of FMCW radar.

dynamically, which brings more challenges for launching a
spoofing attack.

However, radar coordination is usually costly (i.e., re-
quires additional hardware or bandwidth), and hard to
deploy.

Random parameter adjustment: The victim radar can
easily detect the spoofing signal by temporarily powering
off its transmission. If a signal is received when the victim
radar powers off the transmission, the spoofing signal can
be detected. A famous defense against such an attack is
frequency hopping or slot time adjustment [33], [34]. Specif-
ically, the victim radar randomly adjusts its frequency bands
or time slot to defend against the spoofing attack.

It should be noted that such a parameter adjustment
strategy is powerful for previous static spoofing attacks
[4], [5]. However, WASTON provides parameter estimation
for the attacker, which could help the attacker to tune its
spoofing signal timely in a challenge-response scheme.

Challenge-Response: Previous spoofing attack assumes
mmWave radar uses a well-defined waveform designed
to satisfy specific sensing capability. Some previous works
propose to use a radar frame consisting of chirps with
varying parameters to defend the attack [4]. Randomness
can be introduced in the start frequency or the initial phase.

Moreover, WASTON provides a parameter estimation
system for the attacker, which can measure the whole frame
and replay it at a later time. If the parameter estimation can
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TABLE 5

Parameters of the victim radar.
Parameter Value
Sweep time (ns) 20
Chirp idle time (us) 10
Frequency slope (MHz/ps) 60
Frame period (ms) 20
Number of chirps in a frame | 128

be achieved in microseconds (usually the length of the chirp
period) in the future, the attacker could successfully launch
a spoofing attack in theory. However, we only implement
an offline parameter estimation system in this paper, so we
didn’t evaluate the online performance and time cost.

RF fingerprinting: RF signal fingerprinting has gained
attention due to its ability to detect spoofing attacks, which
leverages the unique physical characteristics of the probe
components to assess if the echo signal comes from the same
electronic instruments [4].

This technology is effective for active spoofing but is not
feasible for passive spoofing. Besides, RF Fingerprinting can
only detect the existence of a spoofing signal, and cannot
mitigate its impact. On the other hand, RF Fingerprinting
cannot defend against radar mode classification and param-
eter estimation by the attacker.

Security check: Passive spoofing requires knowing the
prior information about the victim radar and even the trap,
to design an appropriate passive tag for the spoofing attack.
WASTON provided an affordable way to get the prior in-
formation. The only way to defend against passive spoofing
attacks is a security check. However, a manual check is time-
consuming and costly.

7 CONCLUSION

This paper presents WASTON, a radar classification and
parameter estimation system using COTS radars. We con-
ducted extensive experiments to evaluate the efficacy and
robustness of the system for radar classification and pa-
rameter estimation. Furthermore, we demonstrate that the
parameters estimated by WASTON are adequate for launch-
ing a spoofing attack. The attacker can gain knowledge
about the mode and parameters of victim radar, enabling
the practical spoofing attack.
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