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Abstract— Millimeter-wave (mmWave) radars have found
applications in a wide range of domains, including human
tracking, health monitoring, and autonomous driving, for their
unobtrusive nature and high range accuracy. These capabilities,
however, if used for malicious purposes, could also result in
serious security and privacy issues. For example, a user’s daily
life could be secretly monitored by a spy radar. Hence, there is
a strong urge to develop systems that can detect and locate such
spy radars. In this paper, we propose Radar2, a practical system
for passive spy radar detection and localization using a single
commercial off-the-shelf (COTS) mmWave radar. Specifically,
we propose a novel Frequency Component Detection method to
detect the existence of mmWave signals, distinguish between
mmWave radar and WiGig signals using a waveform classifier
based on a convolutional neural network (CNN), and localize spy
radars using triangulation based on the detector’s observations
at multiple anchor points. Not only does Radar2 work for
different types of mmWave radar, but it can also detect and
localize multiple radars simultaneously. Finally, we performed
extensive experiments to evaluate the effectiveness and robustness
of Radar2 in various settings. Our evaluation results show that
the radar detection rate is above 96% and the localization error
is within 0.3m. The results also reveal that Radar2 is robust
against various environmental factors (e.g., room layout and
human activities).

Index Terms— Millimeter-wave radar, spy radar detection, spy
radar localization.
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I. INTRODUCTION

MILLIMETER-WAVE (mmWave) radars have gained
popularity in recent years due to the high resolu-

tion provided by the wide bandwidth. They have been
explored in a wide variety of sensing systems, such as human
tracking [1], [2], health monitoring [3], [4], [5], [6], and
autonomous vehicles [7]. Compared with wearable devices or
cameras, mmWave radars are less intrusive and more robust.
Besides, it achieves a higher range of resolution for accurate
localization.

In particular, mmWave radar systems have been widely used
for detecting users’ location, activity, and vital signs in an
unobtrusive manner [3], [4], [8], [9]. However, this “unobtru-
siveness” feature can also pose a threat to users. For example,
Zeng et al. [1] indicated that unsolicited radars can be used to
spy on users’ daily lives without users’ awareness. Moreover,
mmWave radars can even spy on screens or computers, which
may cause information leakage [10], [11]. With more radar
systems being developed to monitor sensitive information,
the wide adoption of mmWave radars can introduce serious
security and privacy concerns at the same time. Therefore,
it is of critical importance to detect malicious spy radars. It is
also imperative to locate the radar(s) and act accordingly once
they are successfully detected. To the best of our knowledge,
current mmWave radar actively transmits signals.

It has been proposed that spectrum analyzers can be used to
detect mmWave signals [12], [13], [14]. In 2012, Acharya et al.
proposed that unintended electromagnetic emissions (UEEs)
can be taken as a unique signature of electronic devices,
and such a signature can be used for device detection and
identification [14]. However, a spectrum analyzer is required
to sample UEEs. A key limitation of such systems is the high
cost. The spectrum analyzer needs to have a high sampling
rate to detect mmWave radar signals. For example, to recover
mmWave signals with a bandwidth of 4GHz in the 77-81GHz
frequency band, the required sampling rate is usually 8GHz
according to the Nyquist Theorem [15]. Spectrum analyzers
with such a high sampling rate are often costly and unsuitable
for daily use.

Furthermore, even though the spectrum analyzer can detect
the existence of mmWave signals [12], [13], [14], it cannot
localize the hidden radar. The localization of the radar is
crucial to enabling users to locate and remove it. To overcome
the limitations of spectrum analyzers, we aim to use an
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Fig. 1. An application scenario of Radar2. The user leverages a mmWave radar to detect the presence of other mmWave radars and localize them by
measuring the signals at multiple anchor points.

inexpensive, commercial off-the-shelf (COTS) mmWave radar
to detect the presence of spy radars and locate them.

We propose Radar2, a practical spy radar detection and
localization system using a COTS mmWave radar. In com-
parison with previous work using spectrum analyzers [12],
[13], [14], Radar2 can not only detect the spy radar more
affordably but also be able to localize the spy radar. The
application scenario is shown in Fig. 1, where spy radars are
installed in imperceptible places (e.g., behind the curtain or
TV). Radar2 can detect spy radars using a hand-held COTS
radar as the detector and alarm the user. To locate spy radars,
the user should hold the detector and walk to several positions
to measure the signals. Then, the locations of spy radars can
be calculated and reported to the user.

To design such a system, we face the following challenges:
First, the hardware constraint of COTS mmWave radars intro-
duces new challenges for radar detection: 1) COTS mmWave
radars have a limited sampling rate, which is not enough to
directly recover other mmWave signals (which a spectrum
analyzer does). 2) Since COTS mmWave radars are intended
for sense, they have a predefined processing flow and limited
flexibility. The predefined signal processing procedures are
designed to derive the sensing object’s distance and velocity
instead of detecting and recovering signals from another radar.
Therefore, it is unclear how to detect signals from spy radars
using a COTS mmWave radar with such hardware constraints.

Second, other wireless systems, such as WiGig for 60GHz
wireless network [16], also function in the mmWave band.
Therefore, we need to be able to distinguish radar signals from
such WiGig signals working in the same band.

Thirdly, there is no mature solution for localizing spy
radars. Even though mmWave radars can localize objects, they
cannot distinguish a spy radar from other objects. Thus, con-
ventional localization methods for mmWave radar, like FFT,
cannot be used to locate spy radars. In addition, if multiple
spy radars work simultaneously, detecting their presence and
locating them becomes more challenging since their signals
could be superimposed on each other.

To overcome the aforementioned challenges, we propose
Radar2 for mmWave signal detection, classification, and
radar localization. To detect radars’ presence, we design a
Frequency Component Detection method to detect mmWave
signals under the constraint of the current COTS radar pro-
cessing flow. Specifically, we demodulate the received signal
using a sweep frequency signal and multiple single-frequency
signals. Only when the received signal and the carrier signal
have the same frequency components simultaneously can the
intermediate frequency (IF) signal be sampled. Otherwise, the
frequency component in the IF signal will be filtered by a
low-pass filter, for non-destructive sampling [15]. Therefore,
we can observe a peak in the baseband if the mmWave signal
exists. This peak refers to the time when the received signal
and the carrier are at the same frequency. By finding peaks
in the demodulated signal, we can detect the existence of
mmWave signals.

However, another challenge is the existence of WiGig
systems that function in the same mmWave band. Therefore,
we must design a waveform classifier to distinguish radar
signals from WiGig signals. By observing that WiGig and
radar signals have different spectrums, we design a CNN-based
classifier to distinguish WiGig signals from radar signals.

To localize a spy radar using only one detector, we propose
a solution based on Triangulation by measuring signals at mul-
tiple positions. Note that a key difference between spy radars
and other objects is that spy radars actively transmit signals.
Therefore, we can estimate the Angle-of-Arrival (AoA) of the
received signals at several anchor points and combine these
observations to estimate the target location. We first estimate
the AoA using Multiple Signal Classification (MUSIC) at each
anchor point and then move our detector to different positions
to repeat the measurements. Finally, we design an nearest
approaches to localize the spy radar by exploiting multiple
AoAs observed at different positions.

When multiple devices exist, the detector receives a com-
bination of these signals. We assume that these devices are
located at different positions. To distinguish and identify these
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signals, we propose to separate them by their unique AoAs.
We extract them one by one for the detection and localization
of multiple spy radars.

We summarize our contributions as follows:
• We propose Radar2, a practical passive spy radar

detection and localization system using a single COTS
mmWave radar. To the best of our knowledge, this is the
first work on the detection and localization of spy radars.

• To realize Radar2, we propose a novel Frequency
Component Detection method to detect the existence of
mmWave signals, distinguish between mmWave radar and
WiGig signals using a waveform classifier based on a con-
volutional neural network (CNN), and localize spy radars
using triangulation based on the detector’s observations at
multiple anchor points. Not only does Radar2 work for
different types of mmWave radar, but it can also detect
and localize multiple radars simultaneously.

• We performed extensive experiments to evaluate the
effectiveness and robustness of Radar2 in various set-
tings. Our evaluation shows that the radar detection rate
is above 96%, and the localization error is within 0.3m.
The results also reveal that Radar2 is robust against
various environmental factors (e.g., room layout and
human activities).

II. THREAT MODEL

We consider the scenario where a victim, referred to as
Alice, is monitored by an attacker, Bob, using mmWave radar
remotely in the same room or outside the wall. Bob installs
a spy radar in Alice’s room or outside the wall, and uses the
spy radar to generate mmWave and receive the reflected signal,
to spy on Alice and obtain various information:

Activity and location information: A hidden spy radar can
provide the location and activity of Alice to Bob. Bob could
plan a home invasion based on Alice’s activity and location.

Vital sign information: mmWave radar can sense vital signs
like breathing or heartbeat [3], [4], [5], [6], thus Bob can get
access to the healthcare data about Alice. Bob could even
sell the healthcare data to other companies such as Apple
and Google. This would raise the price of Alice’s health plan,
which could lead to Alice losing her property.

Screen and account information: Moreover, unlike spy
cameras, mmWave radar can work through the wall and spy
on screens and computers [10], [11]. When Alice is surfing the
Internet, a spy radar may be able to deduce private information
like login password, voice token, and credential image.

These attacks will raise privacy concerns, and cause data
leakage for Alice. To prevent such spy radar attacks, a detec-
tion system should be developed for Alice. This detection
system should satisfy the following requirements.

Availability. The cost of the system should be acceptable,
and the detection device should be portable.

Localization. Except for the detection of spy radars, the
system should also be able to locate the spy radars.

No Transmission. Our detection system should not emit any
radio signal, otherwise, the attacker may observe the existence
of the detector and pose more serious threats. Therefore, the

detector should be able to detect the existence of spy radars
passively, i.e., disable its transmission.

III. BACKGROUND

Millimeter wave radars transmit electromagnetic signals
in the mmWave band with frequencies ranging from 30 to
300 GHz and detect the movement of objects based on the
reflected signal. According to different patterns of transmit-
ted signals, mmWave radars can be classified into different
categories. Therefore, our system should be able to detect
the presence of all various types of radar. Besides, we aim
at using COTS radar to implement Radar2. Therefore, our
design should be under the constraint of the current radar
processing flow. Meanwhile, we need to differentiate mmWave
radar with a 60GHz wireless transceiver WiGig [17], which
also works in the mmWave band.

A. Type of mmWave Radar

There are various kinds of mmWave radars for different
applications. We will discuss the features and applications of
commonly used radars in this section.

1) CW Radar: Continuous wave (CW) radar transmits a
continuous electromagnetic wave signal with constant ampli-
tude and frequency, typically a sine wave s(t):

s(t) = e j2π f0t+φ, (1)

where f0 is the carrier frequency, and φ is the initial phase.
The receiver demodulates the signal to the baseband and
measures the velocity v based on the Doppler frequency shift
in f0 as

v =
fd

2× f0
× c, (2)

where fd is the Doppler frequency of the target measured by
the radar, and c is the propagation speed of the electromagnetic
wave.

CW radar can measure velocity and relative distance change
but cannot measure absolute distance. Therefore, CW radar
is usually used for motion, speed, vibration, and vital signs
detection.

2) Pulse Radar: The pulse radar emits short and powerful
pulses during the silent period and then receives echo signals.
Pulse radar can estimate absolute range by the time delay
calculated from the echo signal. They are designed mainly for
long-distance sensing. It is primarily used in the military. Other
applications include air traffic control, weather observation,
and satellite-based remote sensing of the earth’s surface.

3) FSK Radar: Frequency Shift Keying (FSK) radar trans-
mits two or more signals with different carrier frequencies
alternatively. The transmitted signal s(t) is:

s(t) =


e2π fa t+θ1 , 0 < t ≤

T
2

,

e2π fbt+θ2 ,
T
2

< t ≤ T
(3)

where fa and fb are two different carrier frequencies, θ1 and
θ2 are the initial phases of the two signals, and T is the period
of FSK signal.
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Suppose there is an object located at a distance d0, then
the absolute distance between the target and the radar can be
calculated as follows:

d0 =
c(1θa −1θb)

4π( fa − fb)
, (4)

where 1θa, 1θb are the phase difference between the trans-
mitted signal and received signals at each frequency.

The range can be determined using the phase difference
between two echo signals. However, FSK radar cannot differ-
entiate multiple objects at different distances. Therefore, FSK
radar can only be used to detect the range and velocity of a
single object.

4) FMCW Radar: FMCW radar transmits linearly
frequency-modulated signals over time, and the most
commonly used signal is a chirp signal.

The FMCW radar transmits a chirp x(t):

x(t) = e j (2π fL t+π St2), (5)

where fL is the start frequency and S is the frequency slope.
Let us suppose that there is a certain object at a distance

di from the radar. Once the receiver receives the signal,
it dechirps the received signal with the transmitted signal to
obtain the intermediate frequency (IF) signal y(t):

y(t) = r(t) ∗ x(t) =
∑

i

αi e j (2π fLτi−π Sτ 2
i −2π Sτi t), (6)

whose frequency depends on the time delay τi , f = −2π Sτi .
Fast Fourier Transform (FFT) of the IF signal can be used by
FMCW radars to determine the range.

FMCW radar can detect both the distance and the speed of
targets. Besides, FMCW radar can detect multiple objects at
different distances, and it is widely used for remote sensing
due to its high resolution in range and speed measurement.
Typical applications for FMCW radar include indoor naviga-
tion, gesture recognition, and vital sign monitoring [18].

B. Radar Processing Flow

Our system should be able to detect the existence of spy
radar using COTS mmWave radar. Unlike mmWave band
spectrum analyzers that have a high enough sampling rate to
recover Radio Frequency (RF) signals, a COTS mmWave radar
is hard to detect another mmWave signal since a low-pass filter
is used for nondestructive sampling. Furthermore, our design
should be within the limits of the COTS mmWave radar’s
processing flow. Therefore, we need a deeper understanding
of its processing flow.

The processing flow of a COTS mmWave radar is shown
in Fig. 2. To sample the received signal using a low sampling
rate, the receiver usually mixes the received and transmitted
signals in the baseband. The mixer performs conjugation and
multiplication of two signals, and we will use demodulation
to refer to this operation in the following section. After
demodulation, the receiver applies a low-pass filter to remove
high-frequency components, which guarantees that the low-
sampling rate ADC can sample the IF signal non-destructively.
The cutoff frequency of the low pass filter is usually less than
half of the sampling rate. Therefore if the frequency difference

Fig. 2. Signal processing flow of COTS mmWave radar.

between the received and transmitted signal is over the cutoff
frequency, the receiver is not able to sample the IF signal. This
brings challenges to spy radar detection.

C. WiGig

WiGig is a wireless standard that uses a 60GHz band
to provide high-speed wireless transmission. Currently, there
are two standards for WiGig, which are IEEE 802.11ad and
IEEE 802.11ay. Both use Orthogonal Frequency Division
Multiplexing (OFDM) as a physical layer modulation scheme
to exploit the benefit of the wide bandwidth of the 60GHz
channel. As WiGig can provide as high as 176 Gbps data rate,
it will be widely adopted for high-speed video transmission in
the home environment. WiGig transceivers are not radars but
work in the same frequency band as mmWave radar. Therefore,
our system should be able to differentiate WiGig signal from
radar signal by analyzing its signal pattern to avoid false
detection.

IV. SYSTEM DESIGN

The goal of Radar2 is to detect the presence and location of
hidden spy radars using a COTS radar. We design Radar2 to
achieve the following targets: (1) radar presence detection:
detect whether there exists a spy radar. (2) spy radar local-
ization: accurately localize the position of hidden spy radars
using only one detector. (3) multi-device detection: detect the
presence and location of spy radars when multiple mmWave
devices exist simultaneously.

The system architecture of Radar2 is shown in Fig. 3.
Assuming there is a spy radar generating mmWave radar
signals in space. The detector of our Radar2 system is also
a COTS mmWave radar. The detector’s antennas receive the
RF signals in space and are passed into the detection system,
which is also implemented on the COTS radar board. The
detection system comprises four parts: (1) Frequency Compo-
nent Detection. We propose a module Frequency Component
Detection to detect the existence of a mmWave signal with
a specified frequency in the mmWave band. (2) Waveform
Classification. Since there exist other mmWave signals like
the WiGig signal, which is not a radar signal. Therefore,
we design a waveform classifier to differentiate WiGig from
spy radars based on its signal pattern. (3) Spy Radar Detec-
tion. We exploit the decision maker, which combines the
results of Frequency Component Detection and Waveform
Classification, to decide whether there exists a spy radar or
not. (4) Localization. We use Triangulation to localize the
spy radar. Specifically, we move our detector to different
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Fig. 3. System architecture of Radar2.

positions and calculate the angle of arrival (AoA) of the spy
radar using the MUSIC algorithm at each position. With the
knowledge of multiple known positions of the detector and its
corresponding AoA observations, the position of the spy radar
can be calculated.

In our Radar2 system, the Frequency Component Detection
Module is the basis of the whole system. In this mod-
ule, we creatively proposed the signal modulation method
and designed two signal patterns that perfectly leverage the
mmWave radar signal processing flow. This allows us to detect
whether a certain frequency component exists in the mmWave
band. We will describe the detailed design of Frequency
Component Detection in the following subsections.

A. Frequency Component Detection

To detect the presence of a spy radar, we have to detect the
existence of a signal in the mmWave band first. The key idea
of Frequency Component Detection is to detect whether there
exists a signal component with a specified frequency f0 in the
received RF signal ( f0 is set to be within the mmWave band
to detect mmWave radar), leveraging the processing flow of a
mmWave radar.

COTS mmWave has a given processing flow that we have
discussed in Section III-B. Therefore, detecting the existence
of other mmWave radars is challenging. Under the constraint
of the given processing flow, we expect to detect the existence
of mmWave signal sent by the spy radar using a COTS radar.

To detect whether there exists a signal component with
a specified frequency f0 in the received RF signal, using
the COTS radar’s signal processing flow, we designed the
frequency component detection as follows. The detecting radar
generates a signal of frequency f0 and multiplies this signal
with the received RF signal (spy radar signal) and passes the
multiplication result with a low-pass filter, and then checks
whether there is a DC component. If there is a DC component,
then the received RF signal includes a frequency component
of f0. The processing flow is the same as a COTS radar
processing flow shown in Fig. 2.

Fig. 4. The observed peak in the time domain when | ft − f0| < fcuto f f .

Assuming the received signal is a single frequency wave
with f0,

r(t) = e j (2π f0t), (7)

where f0 is the unknown single frequency, and the objective
is to demodulate the signal to the baseband so that the ADC
can sample on it. It is impossible to traverse all frequencies
in the mmWave band to find such a frequency f0, so we
propose generating a sweep-frequency signal that sweeps from
the lowest frequency to the highest frequency in the mmWave
band and using this signal to multiply with the received signal.

The frequency in the sweep-frequency signal can be written
as ft = at + b, where the frequency changes with time. The
sweep-frequency signal can be written as

c(t) = e j (2π ft t). (8)

After demodulation, the IF signal can be represented as

d(t) = r(t)× c∗(t) = e j (2π( ft− f0)t). (9)

Only when ft is approaching f0, or in other words, when
| ft − f0| < fcuto f f , where fcuto f f is the cutoff frequency of
the low pass filter, the received signal can be demodulated
to the baseband and sampled by its low sampling rate ADC.
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Otherwise, the low pass filter will remove all frequency
components, and there is nothing in the baseband. As shown in
Fig. 4, the baseband exhibits a peak in the time domain if the
received signal and the sweep-frequency signal have the same
frequency components. Based on this observation, we propose
to find peaks in the time domain to detect the presence of a
narrow band mmWave signal.

Unlike the frequency of a narrow band signal that is
invariant or only changes in a small range, the frequency of a
wide band signal changes with time dramatically. Therefore,
it is not suitable to use another sweep frequency signal to
demodulate these wideband signals. This is because we do
not know the exact frequency range of the spy radar, and it is
hard to synchronize them. This causes a low probability that
they have the same frequency components at the same time.
However, we can search for a single-frequency signal to detect
its presence.

Similarly, when the detector and the spy radar have the
same frequency components, we can observe peaks in the time
domain. However, since the wideband signal may not use the
full mmWave band, we have to traverse the mmWave band to
search for a single-frequency signal whose frequency is within
the frequency range of the wideband signal.

Specifically, the detector demodulates the received signal
using different single-frequency signals. We start at the min-
imum frequency fmin of the mmWave band and set the
frequency of the carrier f0 = fmin . By adding a suitable
step size 1 f0 to increase f0, the detector traverses the whole
mmWave band. If no peak is found, it increases f0 by
1 f0 until it reaches the maximum frequency fmax . There is a
trade-off between search time and detection rate, and a smaller
step size means a higher detection rate but a larger search time.
To choose a suitable 1 f0, we discuss it in different scenarios.

For indoor applications, the mmWave radar usually adopts
a large bandwidth since larger bandwidth means better range
resolution [19]:

1d = c/2BW, (10)

where c is the speed of light, and BW is the bandwidth.
However, the maximum range of the radar is limited by [19]:

dmax =
fsc
2S

, (11)

where c is the speed of light, fs is the sampling rate, and S is
the frequency slope. For outdoor applications like autonomous
vehicles, radar prefers a lower frequency slope. This is because
it indicates a smaller bandwidth, to have a larger sensing range
while sacrificing some range resolution.

Therefore, for indoor applications when the bandwidth is
large, the detector prefers to use a large step size 1 f0 to reduce
search time. For outdoor applications, a smaller step size is
preferred for high detection rates.

Frequency Component Detection is the most significant
module in our design, and the following components are built
based on this module.

B. Waveform Classification

After we detect the existence of the mmWave signal,
we cannot directly conclude that a spy radar exists. This is

Fig. 5. Feature Extraction. Spectrum features are extracted for waveform
classification.

because there are other mmWave devices also working in the
mmWave band, such as WiGig transceivers. To differentiate
these devices from spy radars, we designed a waveform clas-
sifier. As there is only one widely used mmWave band signal
other than radar, which is WiGig, in this section, we only
consider the classification between WiGig signals and radar
signals.

We first extract features that can characterize different signal
patterns of radar and WiGig transceivers and then design a
CNN-based waveform classifier for categorizing the signals.

1) Feature Extraction: We observe that OFDM employed
by WiGig has a different spectrum from radar signals [20],
which can be used for differentiating WiGig from radar
signals.

To explore unique features for waveform classification,
we will prove that single-frequency demodulation will not
influence the shape of the spectrum, and thus the spectrum
after single-frequency demodulation can be used for waveform
classification.

Assume that the received signal has a frequency component
of ft , and we use a single-frequency signal with f0 to
demodulate it in the baseband. The demodulated signal can
be written as

d(t) = e j (2π( ft− f0)t). (12)

In the frequency domain, all frequency components are
reduced by f0, preserving the shape of the spectrum. However,
demodulated with a sweep frequency signal, the spectrum will
be changed since different frequency components are reduced
to different values.

Based on this observation, we propose our feature extraction
processing flow shown in Fig. 5. If a wide band signal is
received, we can simply get its spectrum by Fast Fourier
Transformation (FFT) on the IF signal. While the case is
more tricky for receiving a narrow band signal since the
frequency of the narrow band signal is unknown to us. This
brings challenges to demodulating it to the baseband and
calculating the spectrum. Fortunately, after sweep-frequency
signal demodulation, we are able to observe a peak when
| ft− f0| < fcuto f f . As the frequency components of the sweep
frequency can be estimated by its frequency slope and the time
stamp. The frequency point of the narrow band signal f0 is
able to be estimated. Once we estimate the frequency point of
the narrow band signal, we generate a single-frequency signal
with the same frequency f0, and its spectrum can be calculated
using FFT.
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Fig. 6. Spectrum of various devices after single-frequency signal demodu-
lation.

Fig. 7. CNN-based waveform classifier.

The spectrum of WiGig and radar signals is shown in Fig. 6.
It reveals a large difference between WiGig and radar signals,
which makes it possible to distinguish between them.

2) CNN-Based Classifier: Radar2 aims to recognize pat-
terns of WiGig and radar on the spectrum. As shown in Fig. 7,
the input of our network is the 1× 1024 spectrum. The CNN
architecture used in Radar2 is a deep CNN consisting of
four convolutional layers, each paired with a ReLU and a
max pooling layer, followed by a fully connected (FC) layer.
These convolutional layers encode the spectrum, producing a
representation of the spectrum, and the FC layer outputs the
probability of the type of signal. SoftMax is used to predict
whether the signal comes from WiGig or radar.

C. Spy Radar Detection

A spy radar can be detected if (1) a signal in the mmWave
band is detected, and (2) the signal can be classified as a radar
signal. The whole process for spy radar detection is described
in Algorithm 1.

The detection result q is initialized as “false” at first (line 1).
To detect the existence of a mmWave band signal, a narrow
band signal and a wide band signal should be detected
respectively.

To detect a narrow band signal, we generate a sweep
frequency signal s(t) with the following parameters: amplitude
As , start frequency f0, frequency slope S, and initial phase φ0.
The sweep frequency signal is

s(t) = Ase2π( f0+St)t+φ0 . (13)

The received signal r(t) is mixed with s(t), and the IF signal
ys(t) is used for mmWave signal detection, ys(t) = r(t)s∗(t)
(line 2).

Algorithm 1 Spy Radar Detection
Require: Received signal r(t), a sweep frequency signal s(t)

with frequency slope S and start frequency f0, multiple
single frequency signals li (t), i = 1, 2, 3, · · · .

Ensure: Detection result: q.
1: q ← f alse
2: ys(t)← r(t)s∗(t).
3: yi (t)← r(t)l∗i (t), i = 1, 2, 3, · · · .
4: if max(P(ys (t)))

mean(P(ys (t)))
≥ Rth or max(P(ys(t))) ≥ Pth then

5: tmax ← maxt P(ys(t))
6: fm ← f0 + S · tmax
7: ym(t)← r(t)l∗m(t)
8: Fm ← F FT (ym(t))
9: if C(Fm) ̸= WiGig then

10: q ← true
11: end if
12: end if
13: for all yi (t), i = 1, 2, 3, · · · do
14: if max(P(yi (t)))

mean(P(yi (t)))
≥ Rth or max(P(yi (t))) ≥ Pth then

15: Fi ← F FT (yi (t))
16: if C(Fi ) ̸= WiGig then
17: q ← true
18: end if
19: end if
20: end for
21: return q

To detect a wide band signal such as an FMCW signal,
Radar2 generates multiple single-frequency signals li (t), i =
1, 2, 3, · · · :

li (t) = Ai e2π fi t+φi , i = 1, 2, 3, · · · (14)

where Ai is the amplitude, fi is the carrier frequency and φi
is the initial frequency of each single frequency signal. These
single frequency signals mix with the received signal r(t)
respectively, and the IF signal yi (t), i = 1, 2, 3, · · · is used for
mmWave signal detection, yi (t) = r(t)l∗i (t), i = 1, 2, 3, · · ·

(line 3). The number of single frequency signals i depends
on the step size 1 f0. To choose a suitable step size 1 f0,
we should consider the practical application, which we have
discussed in IV-A.

We detect the existence of a signal in the mmWave band if
a narrow band or wide band signal is identified as mmWave
band signal. Whether there exists a signal in the mmWave
band depends on the power of the IF signal P(y(t)) (y(t)
can be either ys(t) or yi (t), i = 1, 2, 3, · · · ): if (1) the
power is relatively large: max(P(ys (t)))

mean(P(ys (t)))
≥ Rth , where Rth

is a ratio threshold, or (2) the power is sufficiently large:
max(P(ys(t))) ≥ Pth , where Pth is a power threshold,
we detect the existence of a signal in the mmWave band (line 4
and line 14).

Once a mmWave signal is detected, its spectrum is
further calculated for signal classification. If it is not
WiGig, Radar2 identifies the existence of a spy radar.
In Section IV-B.1, we have demonstrated that single-frequency
signal demodulation will not affect the original spectrum, but
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sweep-frequency signal demodulation will destroy its original
spectrum. To obtain the spectrum of a narrow band signal,
Fi , we perform FFT on yi (t), i = 1, 2, 3, · · · (line 15).
But ys(t) cannot be used for spectrum analysis because it is
demodulated by a sweep frequency signal. Radar2 should
estimate a frequency component fm for the wideband signal
and generate a single frequency signal for spectrum analysis.
To estimate the frequency component fm , we leverage the
frequency component found in ys(t). Specifically, once the
time when the power is maximum, tmax , has been detected,
the frequency component fm can be calculated by: fm = f0+

S · tmax (line 5-6), where f0 is the start frequency, and S is the
frequency slope of the sweep frequency signal. We generate a
single frequency signal lm(t) using this frequency component
fm :

lm(t) = Ame2π fmt+φm . (15)

lm(t) is mixed with r(t) again to get the wide band signal
spectrum Fm (line 7-8).

Finally, the spectrum Fi or Fm is fed into the waveform
classifier C(·). If the signal is not recognized as WiGig,
Radar2 identifies the existence of a spy radar, and “true” is
assigned to the detection result q (lines 9-11 and lines 16-18).

D. Localization

To localize spy radars, Radar2 cannot use the conventional
wireless localization method, because it cannot differentiate
environmental objects from spy radars. The main difference
between spy radars and objects is that the objects do not
transmit any signal while spy radars are active. We exploit
this feature to localize spy radars. Specifically, we move our
detector to multiple known positions. At each position, we esti-
mate the direction of a spy radar using the MUSIC algorithm.
Triangulation is used to locate the radar spy. Localizing spy
radars can guide users to take further action, like removing
them.

1) AoA Estimation: Triangulation is based on multiple
observations of Angle-of-Arrival (AoA). We illustrate the basic
idea of AoA estimation in Fig. 8. The objective is to estimate
the AoA θ . The distance between different receiving antennas
d is known. Based on the geometric relationship, the wave path
difference between different receiving antennas is d · sin(θ).
Suppose the received signal from the first antenna is

r1(t) = A1e2π ft t+φ0 , (16)

then the received signal from the second antenna is

r2(t) = A2e2π ft (t+
2d·sin(θ)

c )+φ0 . (17)

The phase difference between r1(t) and r2(t) is

1φ =
4π ft d · sin(θ)

c
=

4πd · sin(θ)

λ
. (18)

Therefore, the AoA θ could be estimated from the phase
difference of different receiving antennas as

θ = arcsin(
λ1φ

4πd
). (19)

Fig. 8. AoA estimation.

Fig. 9. Triangulation.

We use the MUSIC algorithm [21], [22], [23], [24] to
estimate AoA at each anchor. Once θi is estimated at different
anchors, it can estimate the location of the spy radar by
triangulation.

2) Triangulation: We move the detector to multiple known
positions (anchors) and estimate the AoA of the spy radar at
each anchor. Triangulation can be used to estimate the position
of the spy radar [25], [26].

Given N anchor points, for each anchor i , i = 1, 2, · · · , N ,
the estimated AoA is θi , Radar2 draws a line through anchor
i along the direction θi . Ideally, the intersection of the above-
mentioned N lines should be the location of the spy radar.
Due to AoA estimation errors, the lines cannot intersect at
one point. The problem of spy radar localization can be
converted to the problem of finding the optimal point, which
has the shortest sum distance to all lines. We formulate the
problem mathematically in Appendix and present an SVD-
based solution to find the position of the spy radar [27].

E. Multi-Device Scenario

Radar2 can also work well in multi-device scenarios, where
multiple spy radars or WiGig devices coexist. The system
design described in previous subsections is a basic version for
single-device detection. In this subsection, we will describe the
modification of each module to support multi-device detection
and localization.

1) Frequency Component Detection: This module is
designed to detect the presence of mmWave signals. It can
detect all frequency components of signals in the mmWave
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band irrespective of whether it is a single device or multiple
devices. So this module remains unchanged.

2) Waveform Classification: Waveform Classification is
designed to differentiate WiGig from radar signals. If the
detector receives both radar signals and WiGig simultaneously,
it is important to separate them and identify them correctly.
In other words, Radar2 should be able to detect the presence
of a mmWave radar when there exists another radar or another
WiGig transceiver.

Before waveform classification, we need to add a function
Signal Separation for the multi-device scenario. We assume
that different devices work at different positions, so their AoA
is unique, and we can use MUSIC to determine the direction
of each signal. Thus we can separate signals sent by different
devices. Specifically, we first estimate the number of devices
by counting the number of peaks in AoA estimation. Then
we separate them by their direction and feed them to our
waveform classifier separately.

3) Spy Radar Detection: This module combines the results
of Frequency Component Detection and Waveform Classifi-
cation. The logic of the decision-maker module only needs
a small change for the multi-device scenario: if mmWave
signals are detected, and one of them can be identified as a
radar signal, we detect the presence of spy radar. Besides,
this module outputs another parameter, the number of spy
radars ni , to the next module Localization in a multi-device
scenario. The number of spy radars depends on the number
of signals identified as radar signals in the module Waveform
Classification.

4) Localization: Since we have known the number of spy
radars from Spy Radar Detection module, and it can estimate
their direction using MUSIC, we can localize them one by one
using Localization module. Notice that in this module, only
AoA identified as spy radar will be considered for localization.

When multiple spy radars exist, we should move to three
or more anchors to locate the positions of spy radars [28].

In this case, because sometimes a spy radar can be blocked
by other spy radars, the detector may observe a different
number of spy radar ni , i = 1, 2, · · · , N at each anchor, where
N is the number of anchors. However, we assume that among
all anchor points, at least one can observe all spy radars. So we
choose the maximum of ni as the number of spy radars:

n̂ = max(ni ), i = 1, 2, · · · , N . (20)

The multiple radars localization problem is solved based on
single spy radar localization. Radar2 chooses one AoA at
each anchor as if there is only one spy radar, then the
problem is reduced to single radar localization. By solving
the problem, we can calculate a position and its corresponding
error. By traversing all combinations of AoA, we can get all
possible radar locations. Among these locations, we choose n̂
locations with the smallest errors.

Based on this design, our system can detect and localize
spy radars when the WiGig transceiver and radars coexist.

V. IMPLEMENTATION AND EVALUATION

We implement Radar2 using COTS mmWave radars.
We use TI IWR1443 [29] and TI AWR1843 [30] radars

Fig. 10. Experiment setup.

Fig. 11. Room layout.

TABLE I
PARAMETER SETTING

for 77-81GHz frequency band radar detection, and TI
IWR6843 [31] for 60-64GHz frequency band detection.

In Radar2, we set the parameters of the COTS radar as
described in Table I. Four onboard receiving antennas are
leveraged to estimate the AoA of the spy radar. To detect the
presence of a single frequency signal, we designed a sweep
frequency signal that covers the mmWave band of the testbed.

The frequency slope of the sweep frequency signal is set
to 39.9756M H z/µs. Similarly, to detect the presence of a
sweep frequency signal, we design multiple single-frequency
signals that traverse the whole mmWave band of the testbed.
The step frequency 1 f0 of these single frequency signals is
set to 800MHz.

Radar2 uses 25 frames (about 0.8 seconds) signal to
detect the presence of mmWave signals. As a result of our
empirical evaluation, we choose the ratio threshold Rth as
4.4, and the power threshold Pth as 70 dBm. In addition,
we perform 1024-point FFT and normalize the spectrum for
waveform classification. Our CNN architecture is implemented
on Pytorch 1.10.0 using Cuda 11.2.

A. Experiments

We evaluate the Radar2 in both single-device and multi-
device scenarios, respectively.

1) Single-Device Experiment: We use IWR1443 and
AWR1843 as spy radars on 77GHz, use IWR6843, Infi-
neon BGT60LTR11-AIP [32] as spy radars on 60GHz, and
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Fig. 12. Angle setup.

use GuanYee WIHD-551 [33] as the WiGig transceivers on
60GHz. The spy radar transmits a CW/FSK/FMCW/pulse
signal in space for their sensing. For the Radar2 detector,
we disable its transmission antennas and only enable its
receiving antennas for radar detection, which can be imple-
mented by mmWave Studio software provided by TI [34].

(1) We evaluate the performance of spy radar detection
under various impact factors.

a) Environment: We chose two different indoor environ-
ments and one outdoor environment for evaluation. The room
layouts are shown in Fig. 11. Layout1 is an open area where
the multi-path is not severe, while Layout2 is a conference
room with a severe multi-path effect. Two AWR1843 boards
are deployed in this experiment; one works as a spy radar
while the other works as a detector. A detector is placed within
15 degrees of the spy radar at a distance of five meters.

b) Distance and angle: We placed our detector at dif-
ferent distances and angles in a very long corridor to explore
the maximum sensing range of our system. First, we compare
the spy radar detection rate when the detector is placed at a
distance of 5 m, 10 m, 15 m, 20 m, and 25 m from the radar.
Then, we move the detector 3m away from the spy radar and
tune the angle of the spy radar within the Field of View (FoV)
of the detector. As shown in Fig. 12, since the FoV of our
detector is 120◦, we change the angle to be 0◦, 15◦, 30◦, 45◦,
and 60◦ respectively and evaluate the spy radar detection rate
to investigate the impact of angle in our system.

c) Testbeds & types of radar: We use different combina-
tions of {spy radar, detector} to evaluate the robustness of our
system against different testbeds and different types of radar.
TI IWR1443 and AWR1843 are used as 77GHz platforms, and
IWR6843 and Infineon BGT60LTR11AIP are used as 60GHz
platforms. A detector is placed within 15 degrees of the spy
radar at a distance of three meters in a corridor, and we set the
spy radar to work in different modes (CW/FMCW/FSK/Pulse).
TI radars are able to send FMCW and FSK signals, while the
Infineon BGT60LTR11AIP can work in two different modes:
Doppler (CW) mode and pulse mode.

d) Human activity: To explore the impact of human
activity, people are asked to walk around the spy radar and the
detector. The person sometimes blocks the line-of-sight (LOS)
channel between the detector and the spy radar. A detector is
placed in a corridor within 15 degrees of the spy radar and at
a distance of five meters.

(2) We also evaluated the performance of localization under
different impact factors.

TABLE II
PERFORMANCE UNDER VARIOUS ENVIRONMENTS. (DR: SPY RADAR

DETECTION RATE, FAR: FALSE ALARM RATE)

e) Environment: As described above, different environ-
ments have different severity of multi-path. To verify the
robustness of localization against the environment, we placed
the spy radar at different locations in three environments: two
indoor environments, which are shown in Fig. 11, and an
outdoor environment.

f) Height difference: To investigate the impact of height
difference on 2D localization, we set the height difference
of the spy radar and the detector to 0.33m, 0.66m, and 1m,
respectively, and evaluate the performance of localization. The
experiment is conducted in a corridor using an AWR1843
testbed. We move the detector to two anchors to measure the
location of a spy radar, and we move the spy radar to five
different positions for evaluation.

g) Number of anchors: Number of anchors has an impact
on localization performance. We compare localization errors
using 2-6 anchors to investigate the selection of the number
of anchors. AWR1843 is used in this experiment.

2) Multi-Device Experiment: In this experiment, we inves-
tigate the performance of the system when multiple radars
working in different modes (FMCW/CW/FSK/pulse) coexist,
or a WiGig device and a spy radar coexist.

We compare the detection rate and localization error with
the single-device scenario. In this experiment, two devices are
placed at 20◦ and -20 ◦ of 5m from the detector.

B. Performance of Spy Radar Detection

First, we define the terminology and metrics to evaluate the
performance of spy radar detection. A Spy Radar Detection
occurs when a spy radar is detected and identified as a radar.
We define Spy Radar Detection Rate to evaluate the accuracy
that Radar2 can correctly detect and identify a spy radar.
A False Alarm occurs when there is no spy radar while our
system detects one, which comes from noise, or a WiGig
device is recognized as a radar. We denote T P, T N , F P ,
and F N as the numbers of True Positive, True Negative,
False Positive, and False Negative. Therefore, Spy Radar
Detection Rate = T P/(T P + F N ) and False Alarm Rate =
F P/(T N + F P).

1) Impact of Environment: We evaluate the spy radar detec-
tion under two different room layouts, which are shown in
Fig. 11 and an outdoor environment. We collect 7 minutes of
data for each room and outdoors. As shown in Table II, the
detection rate maintains 100% in these three environments,
while the False Alarm Rate is 4.07%, 3.33% and 2.59%
respectively for Room Layout 1, Room Layout 2 and outdoor
environments. The result shows that the spy radar detection of
Radar2 will not be influenced by various environments.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on September 07,2024 at 03:14:07 UTC from IEEE Xplore.  Restrictions apply. 



2820 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 13. Detection rate at various distances and angles.

2) Impact of Distance and Angle: We placed our detector
at various distances and angles to evaluate their impact on
the spy radar detection rate. Notice that in this experiment,
we adjusted the distance and angle within the Field-of-View
(FoV) of the detecting radar. As shown in Fig. 13 (a), the
detection rate is 100% within 20m, and it will drop to 84.72%
at 25m, so we conclude that the maximum range for our spy
radar detection can reach 20m, which is enough for indoor
environment. The FoV of the detector (TI AWR1843) is 120◦,
according to Fig. 13 (b), within the FoV of the detector, the spy
radar detection rate maintains 100% under various directions.
The False Alarm Rate achieves 2.78%, which comes from
noise in the environment.

3) Impact of Testbeds & Types of Radar: We evaluate
the performance of Radar2 under different testbeds, using
different types of radar as spy radar. The spy radar detection
rate achieves 100% for all cases, which reveals that Radar2 is
applicable to different testbeds and is able to detect different
kinds of radars.

4) Impact of Human Activity: We evaluate our spy radar
detection rate when humans walk around the room. The spy
radar detection rate still reaches 100% with human activity,
which shows that Radar2 works well when there are human
activities in the environment.

5) Error Analysis: The detection rate and false alarm rate
are related to signal-to-noise ratio (SNR).

A free space propagation model for mmWave systems
describes the relationship between distance and power
received [35]:

Pr =
Pt A2

eσ

4πλ2d4 , (21)

where Pr is the received power, Pt is the transmitted power,
Ae is the effective surface area of antennas, σ is a radio
scattering factor and d is the effective distance. We can derive
the distance d as:

d = 4

√
(

Pt A2
eσ

4πλ2 Pr
). (22)

Equ. (22) indicates that within a certain range d, if the
received power is sufficiently large Pr > Pth or relatively
large Pr > Rth · mean(Pr + N ), the spy radar is able to
be detected. Therefore, we can successfully detect spy radar
within d . Based on our experiment, d ranges from 20m to 25m.
It is enough to be used indoors. Besides, we can increase d
by adjusting Rth and Pth for outdoor environment.

Fig. 14. CDF of angle error and localization error.

Fig. 15. Angle/localization error under different room layout.

When noise is large, Radar2 may mistake noise as
mmWave signal, which causes a false alarm. The noise power
N should be comparable to our defined threshold:

N ≥ Pth, (23)

or the noise changes dramatically:

max N
mean(N )

> Rth . (24)

The probability of these two cases is small. According to
our experiment, the false alarm rate is under 5%.

C. Performance of Localization

To evaluate the performance of spy radar localization,
we first define our evaluation metrics: Angle Error and
Localization Error. The Angle Error is defined as the dif-
ference between the angle measured by our system and the
angle measured by a goniometer. The Localization Error
is defined as the Euclidean distance between the position
measured by Radar2 and the position measured by a tape
measure. The overall result is shown in Fig. 14. As shown
in Fig. 14 (a), 90% of Angle Error are within 1.036 degrees,
while Fig. 14 (b) shows that 90% of Localization Error are
within 0.2563m.

1) Impact of Environment: We evaluate that our localiza-
tion system is robust in different environments, the result is
depicted in Fig. 15, the Localization Error is within 0.3 meters
and the Angle Error is within 1.5 degrees under different
environments. The result indicates that the localization system
in Radar2 is robust to various environments.

2) Impact of Height Difference: Radar2 provides a 2D
position for spy radar localization, while the height difference
between the spy radar and detector will cause errors in
localization. The height of a room is usually within 3 meters,
so we consider that the difference between a spy radar and
our detector is within 1 meter. In this section, we will give a
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Fig. 16. Angle/localization error at different height differences between the
spy radar and the detector.

Fig. 17. Theoretical error in AoA estimation when the height difference of
the spy radar and the detector is 1m.

theoretical analysis of the impact of height and then conduct
experiments to show that the height difference has a limited
impact on localization accuracy.

a) Theoretical analysis: Suppose the spy radar is located
at pT = (xT , yT , zT ), and our detector is located at pi =

(xi , yi , zi ). If they are placed at the same height (zT = zi ),
the bearing is

θi = arctan(
yi − yT

xi − xT
). (25)

When they are not placed at the same height (zT ̸= zi ), the
bearing is

θ ′i = arctan(
yi − yT√

(xi − xT )2 + (zi − zT )2
). (26)

The difference between θi and θ ′i is negligible if the height
difference zi − zT is small enough. To verify it, we simulate
the AoA error within 10 meters in the 2D plane when the
height difference is 1 meter.

b) Simulation result: As shown in Fig. 17, with increas-
ing distance in the 2D plane, the Angle Error introduced by
the height will be smaller. Within a 1-meter height difference,
the Angle Error is within 0.8 degrees, which is acceptable for
Triangulation.

c) Experiment result: By adjusting the height difference
to 0.33m, 0.66m, and 1m, the Angle Error and Localization
Error is shown in Fig. 16. The result reveals that the Angle
Error is within 2.5 degrees and the Localization Error is
within 0.7m when the height difference is within 1m. Thus we
don’t need to consider the height difference between devices
at home.

3) Impact of Number of Anchors: As we propose the
nearest approach for spy radar localization, the localization
accuracy depends on the number of anchors. We evaluate the
impact of the number of anchors by moving our detector

Fig. 18. Localization error vs. the number of anchors.

TABLE III
SPY RADAR DETECTION RATE WHEN TWO RADARS COEXIST

to more anchor points. AoA is estimated at each anchor
independently, so Angle Error is not related to the number of
anchors. We will compare the Localization Error with different
numbers of anchors.

As shown in Fig. 18, the Localization Error decreases
with an increasing number of anchors. However, when the
number of anchors reaches five, the Localization Error will
not decrease significantly. This experiment instructs us to
choose a suitable number of anchors, which should balance
the localization performance with the cost of the system.

D. Performance of Multi-Device Scenario

To evaluate Radar2 when multiple mmWave devices work
simultaneously, we place two radars working in different
modes and use a WiGig device as an interference term.

1) Spy Radar Detection: The overall Spy Radar Detection
Rate achieves 96.67% in this experiment. Table III depicts the
spy radar detection result when two radars work simultane-
ously, while when a spy radar and a WiGig device coexist, the
spy radar detection rate maintains 100%. Radar2 sometimes
cannot detect one of the spy radars when two radars work
simultaneously. The reason is that these two radars work in
different modes (e.g., CW mode and FMCW mode). The
energy of FMCW sometimes dominates that of CW. Besides,
if the frequency of CW is within the frequency range of
FMCW, then the detector cannot detect CW radar. However,
this situation can be improved by removing one detected radar
and re-detecting spy radars since localization can help us find
the location of the spy radar.

2) Localization: In Fig. 19, the Angle Error and the Local-
ization Error perform well under multi-device scenario: the
Angle Error is within 0.7 degrees while the Localization Error
is within 0.3m. The result reveals that Radar2 can adapt well
to the scenario where multiple mmWave devices coexist.

VI. DISCUSSION

In this section, we discuss the application scenarios and
limitations of Radar2.
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Fig. 19. Angle/localization error in the multi-device scenario.

A. Extension to Other Frequency Band

In our system, we specialize in detecting and localizing spy
radars in the mmWave band. Meanwhile, many other radars
are working on other frequency bands [8], [9]. Moreover,
our architecture can be easily applied to detect and localize
radars operating in other frequency bands. A spy radar can be
detected by using a radar that works in the same band, then
generating single-frequency signals and a sweep-frequency
signal to demodulate from the received signal. As the principle
and processing method are almost the same, we did not
implement the system in other frequency bands. Besides, as a
mmWave radar usually has a smaller size compared with other
low-frequency band radars, it is easier to hide it as a spy radar.

B. Extension to 3D Localization

Radar2 is designed to detect and localize spy radars in
2D spaces. While 2D positioning can solve most cases at
home, it may not be sufficient at an airport or large shopping
mall, where height plays an important role in positioning.
Our design can also be extended to enable 3D positioning.
In that case, the anchors should be deployed in 3D space,
which means that the detector should be moved to different
heights for more observations. With more measurements and
applying Triangulation on the 3D dimension, 3D localization
can also be achieved.

C. WiGig Sensing

In Radar2, we assume that WiGig is used for commu-
nication. However, WiGig can also be used to sense the
environment [36]. Hence, WiGig has the potential to spy
on people’s daily lives. In our Radar2 system, we did not
categorize WiGig as a spy radar. However, Radar2 can detect
the existence of a WiGig transceiver. Therefore, to detect a spy
WiGig, users can turn off their own WiGig devices and then
use our system to detect the presence of WiGig. If a WiGig
transceiver still exists, it must be a spy WiGig, which can be
further localized and removed.

VII. RELATED WORK

In this section, we summarize related works on device
detection, waveform classification, and device localization.

A. Device Detection

Prior works proposed to detect the RF device by unin-
tended electromagnetic emissions (UEEs) with a spectrum
analyzer [12], [13], [14]. Shikhar et al. proposed that UEEs
can be taken as a unique signature of electronic devices. This
signature can be used for device detection and identification.
In addition, they designed a model that can accurately detect
if there is a device nearby emitting UEE or not [14]. They
also showed a novel approach to the application of Principal
Component Analysis (PCA) in detecting UEEs [12]. Weng
et al. designed a neural network for automated device detection
using UEEs [13]. However, to obtain UEEs, an expensive
spectrum analyzer is required, which is unaffordable for daily
use.

Besides, nonlinear effects were explored to recognize hid-
den electronics [37], [38]. Li et al. proposed E-Eye, which
leveraged mmWave to recognize hidden electronics using
nonlinear effect [38]. However, to support nonlinear effects
in mmWave, they require a specialized radar, and they are not
able to localize such devices.

B. Waveform Classification

Most existing works were motivated to classify different
communication signals for channel sensing, and spectrum
allocation [39], [40], [41], [42]. Shi et al. studied deep
learning-based signal classification for wireless networks in
the presence of out-network users and jammers [40]. Soltani
et al. designed a real-time and embedded RF signal classi-
fier [41]. Their work only involved communication signals,
and mmWave band signals were not considered.

Different machine learning methods were explored to clas-
sify civil and military radars [43], [44], [45]. Petrov et al.
designed a neural network for timely and reliable recognition
of radar signal emitters [43]. Chen et al. proposed a new
framework to classify radar emitters for large data set [44].
However, no work has differentiated communication signals
(WiGig) from radar signals in 60GHz. In other words, previous
work didn’t differentiate communication-based RF signals and
sensing-based RF signals.

C. Device Localization

Even though mmWave radars can localize objects (e.g.,
human tracking) [1], [46], [47], they cannot identify which
object it is. Therefore, localizing a mmWave radar is a new
problem that was not studied by others.

Multiple prior works proposed localizing a smartphone by
fingerprinting [48], [49] or RFID tags [50]. However, these
technologies cannot be used to localize spy radars as we
cannot train the spy radar’s information through fingerprinting.
Nguyen et al. [51] proposed Triangulation to locate drones at
different anchors, which brings insight for us to locate a spy
radar.

VIII. CONCLUSION

In this paper, we propose Radar2, a passive mmWave
Detection and Localization system using COTS mmWave
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radar. As an innovation, we first design a Frequency Com-
ponent Detection method to detect the existence of mmWave
signal by comparing frequency components in the received
signal and carrier signals. Besides, to differentiate WiGig
from radar signals, we leverage the spectrum as features for
waveform classification. Finally, we provide a spy radar local-
ization method that utilizes triangulation. We implemented
Radar2 in different kinds of mmWave radar testbeds. Experi-
mental results show that Radar2 is able to detect various types
of radar working in various frequency bands. Our system,
Radar2, reaches up to 96% spy radar detection rate and 0.3m
localization error within 20 meters without COTS mmWave
hardware modification, and it performs well under various
scenarios.
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APPENDIX

We provide mathematical analysis for spy radar localization
in Appendix.

Suppose we have N anchor points p1 = (x1, y1), p2 =

(x2, y2), . . . , pN = (xN , yN ), at each anchor we estimate
the AoA of the spy radar: θ1, θ2, . . . , θN . The objective is to
estimate the position of the spy radar pT = (xT , yT ). We have
the following equations:

x − x1

sin(θ1)
=

y − y1

cos(θ1)
= a1,

x − x2

sin(θ2)
=

y − y2

cos(θ2)
= a2,

. . .

x − xN

sin(θN )
=

y − yN

cos(θN )
= aN , (27)

where each equation is a line represented by an anchor position
with the AoA of the spy radar estimated at this anchor. Thus,
the N -line linear system can be expanded in the following
way:

x + 0× y − sin(θ1)× a1 − 0× a2 · · · − 0× aN = x1

0× x + y − cos(θ1)× a1 − 0× a2 · · · − 0× aN = y1

x + 0× y − 0× a1 − sin(θ2)× a2 · · · − 0× aN = x2

0× x + y − 0× a1 − cos(θ2)× a2 · · · − 0× aN = y2

. . .

x + 0× y − 0× a1 − 0× a2 · · · − sin(θN )× aN = xN

0× x + y − 0× a1 − 0× a2 · · · − cos(θN )× aN = yN
(28)

Accordingly, the matrix representation in Equ. (28) can be
written as:

Gm = d, (29)

where G is a matrix of size (N × 2)× (N + 2):

G =



1 0 − sin(θ1) 0 0
0 1 − cos(θ1) 0 0
1 0 0 − sin(θ2) . . . 0
0 1 0 − cos(θ2) 0

...
. . .

...

1 0 0 0 . . . − sin(θN )

0 1 0 0 − cos(θN )


, (30)

and m and d are two column vectors,

m =
[
x y a1 a2 . . . aN

]T
, (31)

d =
[
x1 y1 x2 y2 . . . xN yN

]T
. (32)

The objective is to find m which minimize ||Gm-d||2,

m̂ = argm min(||Gm-d||2). (33)

The position of the spy radar should be the first two elements
in m̂:

p̂T = (x̂T , ŷT ) = m̂(1 : 2). (34)

To solve such a least square (LS) problem, we use SVD
decomposition:

G = U(N×2)×(N+2) × S(N×2)×(N+2) × VT
(N×2)×(N+2). (35)

We expand the above SVD representation of G in terms
of the columns of U and V, and simplify it into the compact
forms:

G =
[
Uk U0

] [
Sp 0
0 0

] [
Vk V0

]T
, G = Uk × Sk × VT

k . (36)

Obtaining the SVD solution, the optimal m is:

m̂ = Vk × S−1
k × UT

k × d. (37)

The SVD solution gives the point nearest to all N lines
given in 2D space:

p̂T = (x̂T , ŷT ) = m̂[1 : 2]. (38)

Besides, we get the error ϵ:

ϵ =
∑

i [(x̂T − m̂(2+ i) · sin(θi )− xi )
2
+

(ŷT − m̂(2+ i) · cos(θi )− yi )
2
], (39)

which defines the Euclidean lengths from the nearest point to
all lines.
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