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ABSTRACT

We propose FlexibleBP, a novel cuffless blood pressure monitoring
system using a wrist-worn flexible sensor to enhance comfort and
accuracy. By capturing pulse wave signals from the radial artery,
we develop a personalized estimation framework incorporating a
Transformer model with fine-tuning. Experiments with 36 partici-
pants confirm FlexibleBP’s accuracy, meeting AAMI standards. This
work marks a step toward more user-friendly, advanced wearable
BP monitoring solutions.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools;
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1 INTRODUCTION

Blood pressure (BP) is crucial for heart and arterial health. Hyper-
tension, the leading cause of cardiovascular diseases [2], emphasizes
the need for accurate BP monitoring. However, arterial catheteriza-
tion’s invasiveness and cuff discomfort from non-invasive methods
like auscultation [3, 5] highlighting the need for developing com-
fortable, non-invasive BP monitoring.

Non-invasive BP monitoring uses various methods. Optical ap-
proaches like PPG (photoplethysmography) suffer from light sen-
sitivity, skin color, and rigid materials. Ultrasound requires bulky,
high-precision equipment, while flexible pressure sensors, convert-
ing pulse-generated signals into electrical signals, offer simplicity,
low cost, and skin compliance.

Thus, We propose FlexibleBP, a cuffless BP monitoring system
using a manually made wrist-worn flexible sensor to capture radial
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artery signals based on Reflected Wave Transit Time (RWTT)[7].

Main challenges include limited research on RWTT-based monitor-

ing with flexible sensors and significant individual variability in BP.

FlexibleBP integrates RWTT extraction and BP estimation within a

personalized framework using Transformer [6] and fine-tuning.
In summary, our contributions are:

e Introduction of the first cuffless BP monitoring system using
a wrist-worn flexible sensor based on RWTT.

o Development of a personalized adaptation framework with
a Transformer model and fine-tuning to address individual
variability among different users, enabling accuracy.

o Evaluation on 36 volunteers, achieving systolic/diastolic BP
estimation errors of 2.61 + 5.59 mmHg and 1.37 + 5.75 mmHg,
proving the effectiveness of the FlexibleBP design.

2 SYSTEM DESIGN

This section introduces the system design of flexible material BP, as
shown in Fig. 1, the system including Preprocessing: the methods
for noise reduction and signal smoothing; Feature Extraction:
After selecting the optimal waveform fragment, pulse wave features
are extracted through derivation for personalized deep learning
training. Personalized Adaptation BP Estimation Framework:
Predict the blood pressure through two stages of model training.
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Figure 1: System overview of FlexibleBP.

After obtaining raw sensor data from the wrist’s radial artery, a 9-
layer wavelet transform is applied to remove baseline drift, followed
by a 51-window moving average filter to smooth the signal.

In the data collected in our experiment, each segment is 40 sec-
onds long. After noise removal, we use an algorithm to automati-
cally select the most stable, standard-compliant 5-second segment
that best represents the pulse waveform. Subsequently, FlexibleBP
performs feature extraction based on the fiducial points [4] of each
signal segment and its first and second derivatives, as shown in
Fig. 2

We propose the pre-training stage and personal fine-tuning stage
of the FlexibleBP as shown in Fig. 3. The pre-training stage uses
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Figure 2: Overview of the fiducial points and features.

a Transformer architecture with Position Encoding, Multi-Head
Attention, Encoder, and Decoder, utilizing all users’ data except
the current user’s. During fine-tuning stage, we add the manually
extracted features to the decoder layer, with half of the current
user’s data for personalized fine-tuning and half for model testing.
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Figure 3: Overview of the proposed personalization fine-
tuning steps.

3 RESULT

3.1 Implementation and Evaluation

As shown in Fig. 4, we developed a wristband prototype with a
capacitive, flexible sensor that connects to a computer via USB, cap-
turing data at a 500 Hz sampling rate. In an ethics-approved experi-
ment, 36 volunteers provided 40-second pulse wave signals, blood
pressure, and heart rate readings across three protocols—resting,
cold water, and deep breathing—resulting in over 5,000 minutes of
sensor data.

We evaluated accuracy using three metrics: mean error (ME),
standard deviation (STD), and Pearson’s correlation coefficient (P).

3.2 System Performance

The proposed ABP monitoring system shows strong accuracy in a
user-independent setting. As shown in Fig. 5, over 95% of data points
fall within the limits of agreement in the Bland-Altman diagram,
confirming robustness. Pearson coefficients of 0.91 for SBP and 0.76
for DBP demonstrate a strong correlation between estimated and
reference values. The system meets the Advancement of Medical
Instruments (AAMI) standard [1] with a mean error of 2.61 mmHg
(SBP) and 1.37 mmHg (DBP) and standard deviations of 5.59 mmHg
(SBP) and 5.75 mmHg (DBP), all within the required limits.
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Figure 4: BP measurement experiment demonstration

(a) sBP (b) DBP

Estimation Error (mmHg)
Estimation Error (mmHg)

7 80 90 100 110 120 130 140 Ll 50 60 70 80 90 100
Mean SBP (mmHg) Mean DBP (mmHg)

(a) SBP (b) DBP

900 ot 60 P @ (]

80 00

Estimated SBP (mmHg)
°
°

Estimated DBP (mmHg)
-
3

70 80 90 100 110 120 130 140 40 50 60 70 80 90 100
Reference SBP (mmHg) Reference DBP (mmHg)

Figure 5: Bland-Altman and correlation diagram of SBP and
DBP

4 CONCLUSION

In this study, we introduce a wrist-worn blood pressure monitoring
system using a flexible sensor to collect pulse wave signals and
predict blood pressure. We utilize this sensor to collect wrist pulse
wave signals, preprocess them for noise reduction, extract morpho-
logical features, and employ a personalized adaptation framework
for blood pressure prediction. The system meets AAMI standards
for accuracy, marking a significant advancement in portable, user-
friendly blood pressure monitoring.
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