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ABSTRACT
In the rapidly expanding universe of smart IoT, earable devices,
such as smart headphones and hearing aids, are gaining remarkable
popularity. As we anticipate a future where a myriad of sophisti-
cated applications—interaction, communication, health monitoring,
and fitness guidance—migrate to earable devices handling sensitive
and private information, the need for a robust, continuous authenti-
cation system for these devices becomes more critical than ever. Yet,
current earable-based solutions, which rely predominantly on audio
signals, are marred by inherent drawbacks such as privacy concerns,
high costs, and noise interference. In light of these challenges, we
investigate the potential of leveraging photoplethysmogram (PPG)
sensors, which monitor key cardiac activities and reflect the unique-
ness of an individual’s cardiac system, for earable authentication.
Our study presents EarPass, an innovative ear-worn system that
introduces a novel pipeline for the extraction and classification
of in-ear PPG features to enable continuous user authentication.
Initially, we preprocess the input in-ear PPG signals to facilitate
this feature extraction and classification. Additionally, we present
a method for detecting and eliminating motion artifacts (MAs)
caused by head motions. Through extensive experiments, we not
only demonstrate the effectiveness of our proposed design, but
also establish the feasibility of using in-ear PPG for continuous
user authentication—a significant stride towards more secure and
efficient earable technologies.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.
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1 INTRODUCTION
With the advancements in artificial intelligence and the Internet
of Things, a variety of wearable devices, including smartwatches
and ear-worn devices, have become integral to daily life. Notably,
ear-worn devices, or earables, owing to their brain proximity and
portability, are well-positioned to capture valuable information [14].
Nowadays, they promise more than just music and call facilitation,
which could evolve into standalone devices as powerful as current
smartphones in the near future. For example, equipped with multi-
ple sensors, earables are able to track head motions [18], identify
on-the-face gesture interactions [30], monitor health conditions
[6]. However, with the growing capabilities of earables, they may
access personal data continuously, raising significant security and
privacy concerns. Therefore, a robust continuous authentication
system for earables becomes essential, which could also provide an
additional security layer for the paired devices like smartphones,
eliminating unnecessary user-device interactions.

Most of recent studies on earable-based user authentication lever-
aged in-ear microphones [7, 17, 20, 38, 43]. For example, [38] pro-
posed a user authentication mechanism when the user performs
tooth gestures using in-ear microphones. [17] developed a sys-
tem that enables continuous user authentication via an in-ear mi-
crophone while the user is walking. However, it’s important to
note that these approaches both require active user participation.
[43] employed in-ear microphones to record both behavioral char-
acteristics and physiological features, when the user begins the
act of wearing earphones and secures the wearing, which thus
cannot offer continuous authentication. [20] enables continuous
user authentication through active acoustic sensing using an in-ear
speaker and microphone by recording the echos from the user’s
ear canal. Nevertheless, this system leads to high cost due to con-
tinuous sound playing, and it could potentially interfere with the
primary functions of earphones. [7] is a recent study leverages in-
ear microphones for continuous user authentication by exploring
unique intracorporal biometrics, which combine heart motion, bone
conduction, and body asymmetry, using deep learning techniques.
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Figure 1: Continuous authentication with in-ear PPG. Since
the blood volume variations caused by the legitimate user’s
cardiac system is unique, the malicious user can not attack
successfully.

Despite their potential, audio-based solutions still face challenges.
While audio-based solutions offer numerous advantages, they still
present challenges that need addressing. These include privacy
issues arising from the use of always-on microphones, the signif-
icant processing costs incurred due to high sampling rates, and
interference from environmental noise.

To this end, this paper proposes to use PPG sensors to capture
in-ear PPG signals, developing a continuous user authentication
system, EarPass, on earables as shown in Figure 1, which is more
privacy-protective, noise-resistant, and lightweight compared to
existing microphone-based solutions. Due to their non-intrusive na-
ture, capacity for biometric sensing, and affordability, PPG sensors
are being increasingly incorporated into current ear-worn devices
to conduct heart rate monitoring [12], blood oxygen saturation
monitoring [37], blood pressure monitoring [5, 9], and sleep stag-
ing [26]. Moreover, a PPG sensor relies on two components, an
LED that emits light and a photodetector that captures the reflected
light. The changes in the intensity of reflected light are attributed
to variations in blood volume. Recent researchers have found that
such variations caused by individual’s cardiac system is unique and
can be utilized as a reliable biometric method for continuous user
authentication [10, 42].

Developing this system presents two key challenges. Firstly, ex-
isting user authentication systems utilizing PPG sensors have been
primarily focused on the wrist [10, 42]. The exploration of in-ear
PPG signals for user authentication, however, remains a signifi-
cantly under-researched area. Consequently, the feasibility of using
in-ear PPG signals for authentication is yet to be determined. Sec-
ondly, users wearing earphones inevitably perform various head
movements, leading to MAs that can significantly undermine the
authentication performance. Therefore, designing a method to elim-
inate these MAs is a critical challenge. In response to these issues,
we propose an innovative pipeline for the extraction and classifica-
tion of in-ear PPG features to enable continuous user authentication.
Initially, we preprocess the input in-ear PPG signals to facilitate
this feature extraction and classification. In addition, we introduce
an approach for the detection and removal of MAs, specifically
designed to address the challenge posed by head movements.

In summary, this paper has made the following contributions:
• To the best of our knowledge, this paper is the first work
which proposes to use in-ear PPG sensors for continuous
user authentication on earables.

• We verify the feasibility of in-ear PPG for continuous user au-
thentication on earables through identifying and addressing
two unique challenges.

• Through extensive experiments, our results demonstrate con-
sistent, high-quality authentication accuracy across diverse
scenarios.

2 RELATEDWORK
PPG Sensing. Due to their non-intrusive nature, capacity for

biometric sensing, and affordability, PPG sensors are widely used
in various smart health applications, such as heart rate or heart
rate variability monitoring [4, 32, 36], blood oxygen monitoring
[37], blood pressure monitoring [5, 9], respiration rate monitoring
[1, 3, 22], sleep monitoring [21, 31], motion tracking [28, 34, 35, 41],
and gluecose monitoring [24, 40]. In these PPG-based applications,
multiple wear positions are involved, including forehead, wrist,
fingertip, earlobe, and ankle. Because of the rich physiological in-
formation can be sensed in the ear, many researchers have worked
on the application of ear-worn devices [8, 13, 15, 25, 39]. According
to the previous works, the in-ear PPG applications mainly focus on
measuring the key physiological indicators [2, 19, 33]. In particular,
the researchers in [33] designed a prototype to conduct cardiovas-
cular monitoring such as heart rate monitoring. Another work [19]
leveraged the in-ear PPG sensor to measure the vital signs such as
heart rate, heart rate variability, blood oxygen saturation and res-
piration rate. Besides, the researchers in [2] utilized a commercial
in-ear wearable device to conduct remote vital signs monitoring of
COVID-19 risk patients in home isolation. These studies demon-
strate the broad range of applications for PPG sensors in the field of
smart health, suggesting that in the near future, earables equipped
with PPG sensors will become a popular trend. Consequently, en-
suring the safety and privacy of these earables will become a crucial
concern. Therefore, a robust continuous authentication system be-
comes essential. To the best of our knowledge, this paper is the first
work to verify the feasibility of using in-ear PPG signals to enable
continuous user authentication on earables.

Earable-based authentication. Current earable-based authentica-
tion systems are mainly based on audio signals, i.e., leveraging the
in-ear microphones [7, 17, 20, 38, 43]. Specifically, the system pro-
posed in [20] leveraged the uniqueness of ear canal geometry and
utilized the in-ear microphone to capture the echo sound. Another
work proposed in [38] leveraged the inward-facing microphone to
record the toothprint-induced sonic when a user performs teeth
gestures. In addition, EarGate [17] leveraged the uniqueness of the
human gait to identify the user. However, above systems either
needs the active transmission of sound pulses or requires the user
involvement such as performing teeth gestures and walking. The
study [43] employed in-ear microphones to record both behavioral
characteristics and physiological features when the user begins
wearing earphones and secures their placement. However, this
method does not offer continuous authentication. [7] conducted a
recent study that leverages in-ear microphones for continuous user
authentication by exploring unique intracorporal biometrics. This
approach combines heart motion, bone conduction, and body asym-
metry, utilizing deep learning techniques. Despite the potential of
audio-based solutions, they still face challenges. These challenges
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include privacy concerns arising from the use of always-on micro-
phones, significant processing costs due to high sampling rates, and
potential interference from environmental noise. In contrast, this
paper introduces an approach that utilizes PPG sensors to capture
in-ear PPG signals, aiming to develop a continuous user authen-
tication system using earables, offering several advantages over
existing audio-based solutions, including enhanced privacy protec-
tion, resistance to noise interference, and a lightweight design.

PPG-based authentication. Previous research has also explored
the use of PPG sensors for authentication purposes. For instance,
TrueHeart [42] utilized fiducial features extracted from the wrist
PPG signal for user authentication, while PPGPass [10] proposed
a set of geometric features to enable two-factor authentication
systems. However, it is important to note that these systems pre-
dominantly rely on PPG signals acquired from the wrist, which are
susceptible to interference from frequent hand motions in daily ac-
tivities. Moreover, it also indicates the feasibility of utilizing in-ear
PPG signals for authentication still remains uncertain from existing
studies, which will be solved by this paper.

Security of Wearable devices. The rapid advancement of the intel-
ligent Internet of Things has significantly propelled the growth of
wearable applications. However, the extensive capabilities of wear-
able devices also render them susceptible to attacks. For instance,
in [29], the authors discovered that smartwatches can potentially
compromise our typing privacy. Additionally, as outlined in [27],
the sensors integrated into wearable devices may be susceptible to
adversarial attacks. Consequently, ensuring the security of wearable
devices becomes a paramount concern.

3 SYSTEM DESIGN
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Figure 2: Overview of EarPass.

This section introduces the system design of EarPass, including
Preprocesssing: the methods for noise reduction and smooth-
ing; MA Detection and Removal: the proposed approach for
the detection and removal of MAs caused by head motions; User
Authentication: the proposed pipeline for the extraction and clas-
sification of PPG feature from in-ear PPG signals for continuous
user authentication, as illustrated in Fig. 2.

3.1 Preprocessing
After obtaining the raw PPG data from the ear canal, our first step
is to remove noise in order to filter out powerline interference and
eliminate baseline drift. To achieve this, we employ a two-step
process. Initially, we utilize a moving average filter to smooth the

raw signal. Subsequently, we implement a second-order Butter-
worth bandpass filter, with a passband of 0.5-4Hz, to eliminate
high-frequency noise.

3.2 MA Detection and Removal
Figure 3 displays a collected sample of in-ear PPG signals. It is
evident that when the user remains stationary, the gathered pulse
wave signals unveil dependable variations linked to the individual’s
cardiac system. This information proves sufficient for authenticat-
ing the user. However, it is inevitable for users to move their heads
while wearing earphones, which introduces MAs, as represented
by the red box in Fig. 3. Such head movements can result in a rela-
tive displacement between the PPG sensor and the skin, provoking
fluctuations in the PPG signal tied to motion and potentially di-
minishing the authentication performance. Consequently, EarPass
exploits this inherent feature to implement MA detection.

Figure 3: A sample of in-ear PPG signals with head motions.

3.2.1 MA detection. We leverage the fluctuations of the PPG sig-
nals to conduct the MA detection. As shown in Fig. 3, we can
observe that motions can cause abrupt changes in signal amplitude.
Therefore, we employ the Kullback–Leibler (KL) divergence [23]
to calculate the similarity of amplitude distribution between two
adjacent windows. Specifically, we take N data points as the length
of each sliding window to calculate the KL divergence of the ampli-
tudes distribution of two adjacent windows 𝑄 =𝑊𝑛 and 𝑃 =𝑊𝑛+1,
which can be formulated as follows:

𝐷𝐾𝐿 (𝑃 | |𝑄) =
𝑁∑︁
𝑖=1

𝑝𝑖 log2
𝑝𝑖

𝑞𝑖
(1)

where 𝑊𝑛 and 𝑊𝑛+1 represent the 𝑛th and the 𝑛 + 1th sliding
windows, respectively. Utilizing this metric, EarPass can discern
whether the current sliding window encompasses any motion-
related segment. Specifically, we observe that the absolute value
of 𝐷𝐾𝐿 between two adjacent sliding windows that include the
motion segment is greater than a certain threshold, denoted as 𝛿 .
Conversely, the absolute value of 𝐷𝐾𝐿 between two sliding win-
dows devoid of any motion part is less than this threshold. Em-
pirically, this threshold is set at 10. Thus, after EarPass acquires
the preprocessed PPG signal, it initially segments it into multiple
sliding windows. Subsequently, it computes the 𝐷𝐾𝐿 between each
pair of adjacent windows sequentially. Any sliding window with a
𝐷𝐾𝐿 absolute value exceeding 𝛿 signifies the presence of motions.

3.2.2 MA Removal. Since the head motion is occasional and poten-
tially diminish the authentication performance (validated in Section
5), EarPass mitigates this issue by disregarding the corresponding
sliding windows associated with detected head motions.
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3.3 User Authentication
3.3.1 Pulse Segmentation. Following the preprocessing and the
MA detection and removal processes, the resulting signal consists
solely of pulsatile components. The subsequent step involves the
segmentation of these pulses based on the local minima and max-
ima of the signal. Post-segmentation, the signal is partitioned into
numerous segments of the pulse wave cycle. Fig. 4(a) shows one
segment, each of which encompasses one systolic and one diastolic
peak.
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Figure 4: Fiducial points of (a) one PPG segment and (b) its
second derivatives.

3.3.2 In-ear PPG Feature Extraction. Subsequently, EarPass con-
ducts feature extraction based on the fiducial points of each PPG
segment and its second derivatives as used in [16, 42]. Specifically,
Fig. 4(a) illustrates one PPG segment and three fiducial points: sys-
tolic peak, diastolic peak and dicrotic notch. Fig. 4(b) displays the
second derivatives of this PPG segment, as well as the waves de-
noted as a, b, c, d, and e. Utilizing these fiducial points, EarPass
extracts five features, the physiological meanings of which are
provided in Table 1.

Feature 𝐴𝑠 signifies the amplitude of the pulsatile signal. Due to
hardware imperfections, the amplitude of the signal collected from
the same user at two different times may vary. As a result, EarPass
initially standardizes each user’s feature 𝐴𝑠 , formulating the new
feature 𝐴′

𝑠 as 𝐴′
𝑠 =

𝐴𝑠−𝜇
𝜎 , where 𝜇 and 𝜎 represent the mean and

standard deviation of the feature set, respectively. Subsequently, in
order to lessen the impact of differing feature scales on classification,
EarPass performs normalization on all five features for all users.
This is formulated as 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒′

𝑗
=
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑗−𝑀𝐼𝑁
𝑀𝐴𝑋−𝑀𝐼𝑁 (1 ≤ 𝑗 ≤ 5), where

𝑀𝐴𝑋 and 𝑀𝐼𝑁 denote the maximum and minimum of 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑗
across all users, respectively.

3.3.3 User Authentication using SVM. Once the features are ex-
tracted, EarPass proceeds with user authentication, leveraging ma-
chine learning models. We experimented with classifiers like the
Support Vector Machine (SVM) and the Gradient Boosting Deci-
sion Tree (GBDT), and discovered that the binary SVM classifier
outperforms the others. The libsvm library [11] was employed to
implement the machine learning models. During the training phase,
we opted for the Radial Basis Function (RBF) kernel.

Feature Name Feature Description

𝐴𝑠 Systolic amplitude

𝑃𝑤 Pulse width

𝑃𝑖/𝐴𝑠 Ratio of pulse interval to systolic amplitude

𝑇𝑐 Crest time

𝐴𝑏−𝑤/𝐴𝑎−𝑤 ) Ratio of amplitude of b-wave and a-wave

Table 1: Name and description of five features.

4 IMPLEMENTATION
4.1 Earable prototype
Wehave developed a prototype of an earable device, each containing
one PPG sensor. As depicted in Fig. 5, each PPG sensor comprises
a green light-emitting diode (LED) and an ambient light sensor.
These sensors are incorporated into the earbud that fits comfortably
within the user’s ear canal. An amplifier circuit board connects the
sensor and an Arduino microprocessor, serving the dual purpose of
amplifying and performing initial filtering of the PPG signal. The
data is captured at a sampling rate of 100Hz.

(a)

(b)

(c)

Figure 5: The prototype consists of three parts: (a) an am-
plifier circuit (b) the green light PPG sensor (c) the Arduino
microprocessor

4.2 Software setup
We use Matlab to implement the algorithms for pre-processing, MA
detection and removal, and user authentication modules.

5 EVALUATION
5.1 Data Collection
We recruit 10 participants to collect PPG raw data from the ear canal
using our earable prototype. During the data collection process,
participants are required to wear our earable prototype on their
ears. During the data collection process, there are two scenarios
taken into consideration. First is the static scenario, 10 participants
are asked to sit still wearing our earable prototype on their ears for
10 mins. The second scenario is the head motion scenario, where 5
participants perform the motion “nodding” and “shaking left and
right” repeatedly for 2 mins and still for 3 mins.
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Figure 6: (a) CA Acc across different users and (b) ROC curve
under attack.

5.2 Evaluation Metrics
We utilize the evaluation metrics as used in paper [42], which are
shown as follows:

• CA Accuracy (CA Acc): The number of sliding windows
that are correctly labeled as the legal user over the total
number of sliding windows.

• Attack Detection Rate (ADR): The number of sliding win-
dows that are correctly labeled as the attacker over the total
number of sliding windows.

• Attack False Detection Rate (AFDR): The number of slid-
ing windows that are incorrectly labeled as the attacker over
the total number of sliding windows.

• Receiver Operating Characteristic (ROC) Curve: The
trade-off between ADR and AFDR.

5.3 Overall Performance
We assess the overall performance using the authentication results
from three continuous windows through voting. As depicted in
Fig. 6 (a), the average CA Acc among the 10 users is 98.7%. This
suggests that our system, EarPass, can achieve high authentication
accuracy when the user is in a static scenario. The overall perfor-
mance indicates the feasibility of using PPG sensors for continuous
authentication in earables.

Moreover, Fig. 6 (b) illustrates the ROC curve. In particular, the
ADR is 96% while the AFDR is 8%. The experimental results demon-
strate that EarPass can accurately identify unauthorized users with
a high detection rate, while simultaneously maintaining a low error
rate in misidentifying legitimate users as unauthorized. This shows
the effectiveness of our system.

5.4 Performance with MA Removal
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Figure 7: CA Acc of different users before and after MA re-
moval
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Figure 8: CA Acc with (a) different number of continuous
segments. (b) different models

Fig. 7 illustrates the CAAcc across different users before and after
MA detection and removal. In particular, the CA Acc before MA
detection and removal is between 70% to 83% and the average CA
Acc is 76.4%. The results suggest that EarPass remains effective even
when head motions is present. On the other hand, after the removal
of the head motions, the average CA Acc can achieve around 98%.
The results indicate the efficacy of our MA detection and removal
design, leading to improved authentication performance.

5.5 Micro-Benchmarks
5.5.1 Impact of the number of windows for voting. Fig. 8 (a) il-
lustrates the CA Accuracy with different number of continuous
windows, i.e.,, 1, 2, 3, 4, 5. As shown in Fig. 8 (a), CA Accuracy
increases with the increase of the number of continuous windows.
When it reaches 3, the CA Accuracy starts to stabilize. To strike a
balance between runtime latency and accuracy, we choose 3 as the
number of continuous windows for our baseline model.

5.5.2 Impact of Machine Learning Methods. In order to test the per-
formance of different models under the static scenario, we input the
same features into the binary-SVM, binary-GBDT (Gradient Boost-
ing Decision Tree) and MLP (Multilayer Perceptron). As shown in
Fig. 8 (b), SVM works best, i.e.,, the CA Accuracy for 10 users is 98%.
Followed by GBDT, the CA Accuracy is 94.5%. MLP performed the
worst with an CA Accuracy of 87.5%. Therefore, we choose SVM
model as the final authentication model.

6 CONCLUSION
This paper introduces a portable and cost-effective PPG-based ear-
able continuous authentication system. We conducted an investiga-
tion of the PPG signal from the ear canal and validated its feasibility
for use in earable authentication. Specifically, we propose a pipeline
that contains three modules, the preprocessing module, the MA
detection and removal module and the user authentication module.
In addition, we develop a PPG-based earable prototype and conduct
comprehensive experiments. Our experimental results demonstrate
consistent, high-quality authentication accuracy across diverse sce-
narios, providing a security solution for ear-worn devices and offers
unlimited opportunities for future applications of ear-worn devices.
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