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Abstract—With the proliferation of human-carried mobile
devices, spatial crowdsourcing has emerged as a transformative
system, where requesters outsource their spatio-temporal tasks to
a set of workers who are willing to perform the tasks at the spec-
ified locations. However, in order to make efficient assignments,
existing spatial crowdsourcing system usually requires workers
and/or tasks to expose their locations, which raises a significant
concern of compromising location privacy. In addition, traditional
spatial crowdsourcing systems employ a centralized server to
manage the information of workers and tasks. Such a centralized
design does not scale to a large number of workers/tasks, making
the server easily a bottleneck. In this paper, we present an online
framework for assigning tasks to workers without compromising
the location privacy in a fully distributed manner. Our system
protects the location privacy of both workers and tasks through
homomorphic encryption. We further propose a novel wait-and-
decide mechanism and a proportional-backoff mechanism to
increase the number of assigned tasks. Extensive experiments on
real-world datasets illustrate that our proposed system achieves
a large number of task assignments in an efficient and privacy-
preserving manner.

Index Terms—Spatial crowdsourcing, task assignment, privacy
preserving, distributed system.

I. INTRODUCTION

HANKS to the proliferation of mobile devices and the

advancement in sensor technologies, data collection and
sharing using smartphones have become commonplace for mo-
bile users. Exploiting the wisdom and mobility of a large num-
ber of mobile users, spatial crowdsourcing [16] has emerged
as a new mechanism for efficient and scalable data collection.
In traditional spatial crowdsourcing frameworks, requesters
register at a centralized server to publish tasks with spatial
or temporal information. The server then acts as a broker to
manage the tasks and assigns them to different workers. A
worker, upon accepting a task, needs to physically travel to the
specified location and perform that task. Spatial crowdsourcing
has been employed in a wide spectrum of applications, such
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as traffic management, weather monitoring, environmental
sensing, crises response, smart cities, and journalism (e.g. [13],
[22], [28]).

In spatial crowdsourcing, location information of tasks and
workers critically affects the system performance. In order to
make optimal task assignment (e.g. maximizing the number of
assigned tasks, or minimizing the travel cost), existing spatial
crowdsourcing systems (e.g. [16], [27]) usually require work-
ers (requesters) to reveal their exact locations (task locations)
to the server. However, the server in spatial crowdsourcing may
not be fully trustable in practice, not to mention the workers
and requesters. Thus, the revelation of the locations of either
tasks or workers raises serious privacy concerns. In light of
this problem, there is a pressing need to build a secure spatial
crowdsourcing system that protects the individual location
privacy for both requesters and workers.

Many recent research has focused on making efficient task
assignment while protecting location privacy. Most of the
existing works achieve location privacy preservation based
on location obfuscation or perturbation techniques such as
k-anonymity [12] and differential privacy [3]. Where k-
anonymity allows a user to hide its location among k — 1 other
users, while differential privacy preserves a user’s location
privacy by empowering the user to generate and report a per-
turbed location according to certain noise function. However,
these techniques have their own drawbacks. The drawback of
k-anonymity is that it needs to group entities (e.g. workers,
requesters) together, making it a poor fit in spatial crowdsourc-
ing systems where no trust relationship between requesters and
workers can be assumed in practice. A well-known problem
for differential privacy is the unnecessary revelation of task
locations to unassigned workers [26] due to the location
perturbation. Moreover, the perturbed locations caused by
differential privacy will also compromise the performance of
task assignment.

Existing studies assume a centralized model for privacy
protection in which a server oversees a global picture and
makes task assignment for requesters [25], [15], [29]. A main
issue for such a centralized model is that many centralized
crowdsourcing systems are not flexible and cannot provide a
rapid task assignment [23]. For example, only less than 15%
of tasks can be finished in one hour in Amazon Mechanical
Turk [14]. Another economic concern is that the server who
acts as a broker is expected to charge commissions to the
requesters, which, in turn, reduces the monetary income of
workers [17].

Recent years, fully distributed spatial crowdsourcing has
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became a more promising framework for efficient task as-
signment by exploiting nearby human intelligence [23], [5],
[24], [20]. The term fully distributed is in the sense that task
assignment is obtained through bidirectional selection between
nearby mobile workers and requesters without any involve-
ment of a centralized server. The fully distributed architecture
can overcome the drawbacks existed in the centralized spatial
crowdsourcing systems, yet none of the previous distributed
systems considers the location privacy protection problem
during the task assignment procedure.

Motivated by these problems, we propose a framework
named PriTA (PRIvacy-preserving Task Assignment), which
enables a group of requesters and workers to achieve on-
line task assignment in an effective and fully distributed
manner, without compromising their location privacy. De-
spite the great potential, developing a realistic PriTA system
remains challenging. One key issue is how to get precise
distances between workers and requesters to guarantee the
task assignment performance while preserving the location
privacy of workers/tasks. Another challenge is how to increase
the number of assigned tasks under such a fully distributed
scenario.

To address the first challenge, we propose to use encryption
to protect location privacy as the precise location information
is concealed behind the ciphertexts after encryption and will
not be revealed to any party. Specifically, homomorphic en-
cryption [11] is proposed to be exploited in which ciphertexts
can be directly used in various meaningful operations (e.g.
addition and multiplication). Hence, a participant (i.e. worker,
requester) can calculate distances and other distance-related
information based on the encrypted location information. As
a result, the homomorphic encryption scheme has the potential
to yield not only robust location privacy protection but also
high quality task assignment since no obfuscation or pertur-
bation of the location is needed.

For the second issue, we propose a wait-and-decide mecha-
nism and a proportional-backoff mechanism in order to make
efficient task assignment based on encrypted messages in a
fully-distributed setting, where the efficiency of the task as-
signment in our system is measured by the number of assigned
tasks. Specifically, none of the requesters or workers could
hold a global view like a server to manage the task assignment
process in the distributed spatial crowdsourcing scenario.
Therefore, we first design a wait-and-decide mechanism to
help workers make better decisions in selecting tasks. This
regard is achieved by allowing workers to wait for a period of
time. A proportional-backoff mechanism is then proposed to
support requesters to choose closer workers according to the
time delay of the recieved messages, where the backoff time
is proportional to the distances between workers and tasks.

We summarize our contributions as follows:

1) We propose an online spatial crowdsourcing framework
PriTA that, for the first time, performs task assignment
between workers and requesters in a fully distributed
manner, without disclosing of their accurate location
information.

2) We propose to use homomorphic encryption to protect
the location privacy for both tasks and workers. We
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design a distributed mechanism to achieve efficient task
assignment based on exchanges of encrypted messages
between requesters and workers.

3) We conduct extensive experiments driven by real-world
datasets. Experimental results show that our proposed
framework achieves near-optimal task assignment, with
low computation and communication overhead on both
workers and requesters.

The remainder of this paper is organized as follows. Section
II introduces the background, system model, and design ob-
jectives. Section III presents our system procedure in detail. In
Section IV, we make a thorough privacy preservation analysis.
Performance evaluation is given in Section V, followed by a
survey of related work in Section VI. We conclude the paper
in Section VIIL.

II. BACKGROUND AND SYSTEM MODEL
A. Spatial Crowdsourcing Model

In traditional spatial crowdsourcing systems, there are usu-
ally three main entities: the requesters, the workers, and the
platform (server). The requesters want to outsource some
spatio-temporal tasks to workers. The workers are willing to
accept several tasks and are able to finish them within their
capability. The platform usually collects the task information
and assigns them to appropriate workers. The workers who
receive and accept the task assignment will move to the task
locations to perform the tasks. In return, the workers can earn
a reward for finished tasks.

With the development of device-to-device communications
and self-organizing network, the spatial crowdsourcing system
without platform is emerging and gaining more and more
attention [23], [5], [24], [20]. In such systems, there is no
centralized platform. Instead, all the requesters and workers
communicate with each other directly, and all the decisions
are made in a distributed way. In this paper, we will focus on
the task assignment on such fully-distributed spatial crowd-
sourcing systems.

Figure 1 gives an architecture overview of our system
model. There are M requesters {ri,ra,...,r;, ..., p}, and N
workers {w1, w2, ..., wj, ..., wn }. The requester has some tasks
needed to be completed in its location. In this paper we make
the assumption that requester r; and his task #; are in the same
place and tasks are generated asynchronously. For task #;, it has
a maximum number of workers the requester requires, which
is defined as the capacity of the task c¢;,. The farthest distance a
worker w; can go is its moving range R;. The worker can only
accept and finish the tasks whose distance from the worker’s
location is smaller than R;. There is also a predefined capacity
Cw; for the worker w;, which indicates the maximum number
of tasks the worker can finish during a specific busy time
Tpusy- To prevent malicious node from entering the system, we
assume all the requesters and workers have been authenticated
by a registration authority (RA) upon joining the system. The
RA is only responsible for authentication but plays no role in
online task assignment.

As the system is fully-distributed without platform, the task
assignment between the tasks and the workers can only be
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Fig. 1: System architecture.

achieved by the negotiation between requesters and workers
via direct device-to-device communication (e.g. WiFi, LoRa,
etc.). Assume that the transmission range for the users (work-
ers and requesters) is R;, a message can not be heard by a
user who is larger than R; far away from the sender of the
message. Meanwhile, the location privacy of the requesters and
workers must be protected during the negotiation procedure.
The requester does not want its task location to be disclosed
before the task has been successfully assigned. The worker
does not want to expose his exact location to others either.
Table I summarizes the major notations used in our paper.

B. Threat Model

In our model, we mainly focus on the privacy threats from
internal requesters or workers, while security attacks from
external malicious attackers are not considered. Specifically,
the internal requesters and workers are those who pass the
RA’s authentication. They perform the fully distributed spatial
crowdsourcing together in our system. The other entities
outside the system are called external entities. Following the
prior work [26], [21], [4], we make the following assumptions
that are widely accepted in the literature. First, we assume
that requesters and workers are honest but curious. Meaning,
they all follow the specified protocols strictly, but are eager
to dig out the private information of the others based on the
available information. Specifically, a requester is eager to learn
the location information of workers and/or the other requesters.
However, it will always obey the protocol rules to participate
the task assignment properly. For example, it cannot create
multiple dummy tasks at different locations at the same time
as this deviates the protocol requirements. For a worker, it
may also want to know the locations of published tasks and
the other workers without breaking the protocol requirements.
For instance, it cannot create multiple fake identities, as the

protocol only allows each requester/worker to have one legal
identity. In addition, we assume there is no collusion between
requesters and workers, which is also a widely accepted
assumption. This means each requester and worker cannot
cooperate with each other to learn location information about
others. For example, the worker will not send the unit backoff
time T,,;; to any requester. We also assume trustable RA that
cannot be breached by any adversary.

C. Design Objectives

We aim to achieve four main objectives in this paper.

1) Our system should protect the location privacy of each
task safely before the task is assigned. Only those work-
ers who agree to do the task can receive the accurate
location of that task.

2) Our system should protect each worker’s location in
every single step. The precise location cannot be learned
by any other parties throughout its participation.

3) Our system should maximize the number of the assigned
tasks in a fully distributed manner.

4) Low computation and communication cost are required
for workers and requesters for fast task assignment.

D. Homomorphic Encryption

To protect the location privacy for both tasks and workers
in a distributed setting, we propose to use homomorphic
encryption, a public key encryption scheme supporting various
operations over the encrypted data, to hide the sensitive
location information behind the ciphertexts.

Due to the reason that fully homomorphic encryption is
inefficient in computation, somewhat homomorphic encryp-
tion (SHE) was proposed as an alternative, in which only a
limited number of addition and multiplication operations are
supported. In this paper, we propose to use Fan-Vercauteren
(FV) homomorphic encryption and only use the somewhat
homomorphic encryption of [10]. FV homomorphic encryp-
tion is built upon the hardness of Ring-Learning-with-Errors
(RLWE) problem. Given a homomorphic public key epk, the
message m after encryption is denoted by E.,i(m), where
E¢pi(-) denotes the encryption function. In order to decrypt
the ciphertext E.,x(m), we need a decryption function D g4k
with a homomorphic private key dsk. The message m thus
can be decrypted by Dgsx(Ecpr(m)). We summarize some
properties of the FV homomorphic encryption that will be
used in the paper:

Homomorphic Addition and Subtraction: The homo-
morphic addition/subtraction operation in the ciphertext
achieves the same result as the encrypted data of the addi-
tion/subtraction of two plaintext. Formally, we have

Eepk(ml) @ Eepk(mZ) = Eepk(ml +my), (1)
Eepk (ml) © Eepk(mZ) = Eepk(ml - m2)’ 2

where @ and © are the homomorphic addition and subtraction,
respectively.
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Homomorphic Multiplication: Homomorphic multiplication
includes two steps, ciphertext multiplication and relineariza-
tion. In ciphertext multiplication, we simply multiply two
ciphertexts regardless of the influence of growing errors which
is introduced by multiplication. The result for ciphertext
multiplication is denoted as ¢. Then in relinearization, we use
evaluate keys evk to eliminate the interference of errors to
obtain the actual ciphertext. Let E;"’Vi(') be the relinearization
function to correct the ciphertext multiplication result. The
homomorphic multiplication can be denoted as

Eepk(ml) ® Eepk(mZ) = E:‘;z(C) (3)
= Eepk(ml X my).
where ® represents the homomorphic multiplication.

In summary, homomorphic encryption allows computations
to be done on encrypted data, without requiring access to
a decryption key. Leveraging this property, we are able to
design protocols which allow a user to calculate the distance
between two entities on the encrypted location messages,
without disclosing the exact original location to neighboring
users.

III. SYSTEM DESIGN

In this section, we present our framework, called PriTA. We
start with a brief overview of PriTA, followed by a deep dive
into its design details.

A. Overview

PriTA aims at achieving location privacy-preserving task as-
signment in a fully-distributed spatial crowdsourcing scenario
while maintaining the efficiency of task assignment.

Our design essentially considers two aspects. The first is
how to acquire necessary information based on the encrypted
messages. The second is how to make task assignment in an
efficient way according to the obtained information. To address
the former aspect, each requester will broadcast its encrypted
location to nearby workers. Each worker then computes based
on homomorphic encryption that whether it is less than its
moving range or not for the distances between itself and the
tasks, sends the encrypted results afterwards. A requester can
then obtain the information of whether a worker can perform
its task. As for the second respect, a novel wait-and-decide
mechanism is employed where workers need to wait to gain
higher chances to select more tasks with closer distances.
Moreover, a proportional-backoff mechanism is adopted to
enable the nearer worker to back off for shorter time to assist
requesters to choose more suitable workers.

There are 5 main steps along with an initialization step in
our framework. Firstly, each worker/requester needs to register
at an RA to get a certificate associated with its unique ID in
the Initialization Step. The initialization step is necessary as
it reduces the chance that an external malicious attacker joins
in the system, meanwhile it also resists Sybil attack produced
by any worker or requester. During the PriTA protocol, each
requester proactively releases its task along with the encrypted
location to the neighboring workers when it has a task to
be performed (Step 1). The requesters and the workers then
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interact with each other by exchanging encrypted messages
(e.g. locations, intermediate results) to obtain location and
distance information for task assignment (Steps 2 and 3).
Then both requesters and workers wait for a certain period of
time according to the wait-and-decide mechanism. In addition,
based on the proportional-backoff mechanism, workers with
closer distances back off to requesters for shorter time so as
to have higher chances to be selected (Step 4). At the end
of the protocol, requesters confirm the task assignment results
to the workers who are willing to perform the tasks (Step
5). In addition, to avoid message collision, each worker and
requester will do Carrier Sense before any data transmission.

B. System Initialization

We assume that all the requesters and workers have already
been authenticated by the RA upon joining the system. Each
authenticated requester/worker is assigned a unique ID. As a
result, no malicious external attacker holds the probability to
join in the system and Sybil attack is prevented as each re-
quester/worker is only granted to have one identity. To encrypt
the messages, each requester and worker should generate a
public-private key pair. For requester r;, denote its homomor-
phic public-private key pair by (epk,,, dsk,,). For worker w,
it also generates a key pair (pk;,sk,,) for encryption and
decryption. The reason a worker doesn’t need a homomorphic
key pair is that we will not do homomorphic operations on the
ciphertexts encrypted by a worker’s public key. In addition, it
costs less time when encrypting or decrypting messages using
general key pair. All public keys are available to everybody,
yet the private keys are kept by the owners only. Moreover,
the RA announces a system decided value 7,,,;; only to each
worker. This value will be used later to determine the backoff
time in the proportional-backoff mechanism.

C. Protocol Design

In this subsection, we describe our privacy-preserving, fully
distributed task assignment protocol. The basic flow chart of
our system is illustrated in Figure 2.

STEP 1: TASK RELEASING

When the requester has a task needed to be done, it broad-
casts a TASK_RELEASING message to release the task to
its neighboring workers. The message contains three domains:
the requester’s ID r;, the homomorphic public key epk,, of
requester r; and the encrypted location of task #; using the
requester’s homomorphic public key epk,,. That is,

TASK_RELEASING(r;) = [ri, epky,, Eepi, (I1)].

Here, [,, = (x;,,y:,) is the location of task #;, where x,, and y,,
are the x- and y-coordinates of the task location, respectively.
Therefore, E, Pk, (It,) is the encrypted location of task #;, i.e.,

Eepkri (lti) = (Eepk,-l. (xti), Eepkrl. ()’tf))~ 4

STEP 2: DISTANCE COMPUTING

Once a worker receives a TASK_RELEASING message
from its neighboring requester, the worker computes the dis-
tance between itself and the task in the encryption domain and
compares the distance with its moving range. It then packages
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TABLE I: Major notations.

Notation Description
M, ri,t; Set of all requesters, one requester, one task
N, wj Set of all workers, one worker
Ct; s Cw; Task capacity, worker capacity
R; Worker’s moving range
T Thusy Worker’s waiting time, worker’s busy time
R; Transmission range of a message
epky, dsky, Homomorphic public key of a requester, homomorphic private key of a requester
pkwj , sk, j Public encryption key of a worker, private decryption key of a worker
E Phw; (), Eep ki (+) | Encryption function using a worker’s public key, encryption function using a requester’s public key
Dy Ko (1), Dgs kr; () | Decryption function using a worker’s private key, decryption function using a requester’s private key
ly; Location of a task
dij, zij Distance between #; and w;, distance comparison result between #; and w;
thackof f » Lunit Backoff time, unit backoff time

Requester r; Worker w;

TASK_RELEASING (1;):
[r, epkri: Eepkri (lti)]

ENCRYPTED _DIST (1, Wj):
[ri wj, Pkw,-' Eepkri (zii)]

DIST_CONFIRM (r):
Ce, Ti, WjaEpkwl_ (zij)awk’Epkwk (Zix) -]

TASK_PROPOSAL (1, w;):
[, wj]

TASK_CONFIRM (r;, w; ):
[, wj, Epk,, ()

Fig. 2: PriTA protocol design.

the comparison result in the ENCRYPTED_DIST message and
sends the message to the requester. Note that the distance
comparison are calculated in the encryption domain, so the
result is also in the encryption domain.

Each worker w; has a predefined moving range R;, which
is the farthest distance the worker is willing to go. Worker w ;
is only interested in accepting and finishing the tasks that falls
into its moving range R;. We use the Euclidean distance from
worker w; to task #;, i.e.,

d[j = ,[Axl.zj +Ay?j, (@)

where Ax;; and Ay;; are the difference of x- and y-coordinate
between task #; and worker w, respectively. Let z;; = dl.zj —Ri
be the distance comparison result between worker w; and task
t;, where z;; > 0 means the worker cannot reach the task and
hence cannot accept it, and z;; < 0 means the task falls into
the worker’s moving range and can be accepted.

The worker should send the comparison result back to
the requester. However, as the task’s location is encrypted, it
cannot obtain the plaintext of comparison result z;;. Instead,
we calculate it in the encryption domain and send out the
encrypted result. Therefore, in our protocol, the worker sends

out the ENCRYPTED_DIST message which contains the fol-
lowing four domains: the ID of the requester r;, the ID of the
worker w;, the worker’s public key epk,,;, and Eepk,, (zij)s
which is the distance comparison result z;; encrypted by the
homomorphic encryption key epk,,:

ENCRYPTED_DIST (r, w;) = [ri, wj, epky;, Eepi,, (zij)].

The public key of worker w; should be sent to the requester
because it will be used for data encryption in the subsequent
steps. The encrypted distance comparison result is calculated
as follows:

Eephy, (2ij) = Eepk,, (AX}; + Ay7; = RY)

; 6
= Eepk,, (Ax[zj) ® Eepr,, (Ay%j) © Eepi,, (Ri) ©

According to the principles of homomorphic encryption
(Section II-D), homomorphic calculation can maintain the
addition, subtraction and multiplication operations in the en-
cryption domain. Therefore, Eq. (6) can be computed by
bringing Eqs. (7), (8) into Eqgs. (9), (10) and bringing Egs. (9),
(10), (11) into Eq. (6):

Eepk,, (Axij) = Ecpk, (Xw;) © Eepk,, (x1,), @)
Eepk,, (Ayij) = Eepk,. Yw;) © Eepk,, (V1) (8)
Eepk,, (Axizj) = Eepk,, (AXij) ® Eepk,, (Axij), )]
Eepk,, (Ay?j) = Eepk,, (Ayij) ® Ecpi,, (Ayij), (10)
Eepi,, (R}) = Eepi,, (R)) ® Ecpi, (R)). (1)

Therefore, the encrypted distance comparison result can be
calculated and put into the ENCRYPTED_DIST message to
send to the requester.

STEP 3: DISTANCE CONFIRMATION

When a requester sends out a TASK_RELEASING mes-
sage, it may receive multiple ENCRYPTED_DIST messages
from different workers. The requester then decrypts the dis-
tance comparison results, selects the reachable workers and
broadcasts a DIST_CONFIRM message, incorporating the
workers who can reach its task and their distance comparison
results in the message. The DIST_CONFIRM message should
contain the ID and capacity of the requester, the ID of all
the workers who can accept the task (e.g. z;; < 0) and their
distance comparison results to help the workers make decisions
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among multiple tasks. However, the distance comparison result
should not be transmitted in plaintext. Instead, it should be en-
crypted using the receiving worker’s public key to avoid packet
sniffing from other nodes. Therefore, the DIST_CONFIRM
message sent from requester r; is as follows:

DIST_CONFIRM(r;) = [¢y,.riswj Epi,
Wi, Epk,, (Zik), -+ 1,

(Zl])

where £, Ko, (zij) is the comparison result between #; and w,
encrypted by worker w;’s public key, while w; and wy are
the reachable workers selected.

To get the real value of the distance comparison result, the
requester 7; uses its homomorphic private key dsk,, to do
decryption, i.e.,

2ij = Dask,, (Eep, (zif))- (12)

For worker selection, the requester will select all the work-
ers with z;; < 0, which means that task ¢#; is within the moving
range of worker w;.

STEP 4: TASK PROPOSAL

As a worker may receive several DIST_CONFIRM mes-
sages during a waiting time, it needs to compare the distances
of those tasks and select the most suitable ones. The worker
will then send TASK_PROPOSAL messages to tasks it can do
after a short backoff. In this step, we need to design the format
of the TASK_PROPOSAL messages. More importantly, we
need to carefully design the mechanism on how the workers
collect and send out the message. In brief, we design a waiting
mechanism to guarantee the workers to collect enough task in-
formation. We also adopt a proportional backoff mechanism to
enable closer workers to backoff a smaller duration compared
with the further ones, in order to increase the possibility of
assigning tasks to nearby workers which are more suitable to
complete the task.

Message format: Once receiving a DIST_CONFIRM mes-
sage, the worker w; uses its private key sk, to decrypt
the message and extract the distance comparison result z;;.
The distance between the task #; and worker w; can hence
be derived by d}; = z;; + R}. The worker w; waits for a
duration 7, and ranks all the distances from short to long. The
ranked tasks are selected in order until the number of selected
tasks exceeds the worker’s capacity c,,,. The worker then
sends TASK_PROPOSAL messages to each of the selected
tasks. The TASK_PROPOSAL message contains the following
domains: the ID of the worker and the ID of the task, i.e.,

TASK_PROPOSAL(H, Wj) = [I’l‘, Wj] .

Wait-and-decide: The time of sending TASK_PROPOSAL
message is also carefully designed. Suppose that at time
tq4, the worker receives the DIST_CONFIRM message from
the requester r;. During the next 7,, duration, it receives
several more DIST_CONFIRM messages, but it still decides
to propose to requester r;. It will then start to conduct backoff
to r; at time ¢, + T,,. If during the waiting time, another task
tr comes at time 75, and the worker decides to propose to
requester i too, it should then start from time #; + 7, to start
backoff to r¢. In short, the requester should start backoff at 7,
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duration after sending that task’s DIST_CONFIRM message.
This is to guarantee that the TASK_PROPOSAL messages
to the same requester are started to conduct backoff at the
same time. Therefore, in such a fully distributed system, local
synchronization can be achieved, and the message with the
shortest distance will finish backoff and be sent out first.
Note that if a better task keeps on coming during the waiting
duration T,,, the worker has the risk of waiting forever. To
avoid this problem, we impose a maximum waiting time 7,4
to prevent the worker from waiting forever.

Proportional-backoff: The backoff time is proportional to
the distance, fpackorf = NTunir, Where n = d . Tyniz 1s a
predefined empirical value decided by the system developers
based on their experience or industry requirements, this value
is known to all workers but no requester inside the system.
The worker will finally send out TASK_PROPOSAL message
at time t, + Ty +tpackoys ¢ if it selects r;. During the backoff
time, if the worker hears other workers already sent out the
TASK_PROPOSAL messages to requester r;, and the number
of proposing workers already exceeds the capacity of the task
¢y, then it will abort his proposal to r;, instead, it will propose
to the following tasks according to the ranking.

STEP 5: TASK ASSIGNMENT

After receiving several TASK_PROPOSAL messages from
the neighboring workers, the requester notifies those workers
by sending them TASK_CONFIRM messages to confirm their
participation to the task. The requester also encapsulates
the encrypted location of the task in the TASK_CONFIRM
message to tell the workers where to perform the task.

From time ¢,+T7,,, the requester »; will continuously receive
TASK_PROPOSAL messages from different workers. Each
time the requester receives a TASK_PROPOSAL(#;, w;) he
puts the worker w; into a final chosen worker set W and
sends the TASK_COMFIRM message to the worker w ;. There
are three domains in the TASK_CONFIRM message: the ID
of the task ¢;, the ID of the worker w; and the location of the
task encrypted with the public key of the worker E (lt,)

)]

When the size of W}, reaches the capacity of the task c,,, the
requester will no longer confirm any further task proposals.

Upon receiving the TASK_CONFIRM message, the worker
decrypts the message using his private decryption key sk,
and gets the location of the task /,,. The location of the task
must be known by the selected worker because the final chosen
worker has to do that task right on the task’s location. Then, the
worker moves to the task’s location to conduct those assigned
tasks. The worker cannot receive new tasks during the busy
time Tp,, until all the assigned tasks are completed.

TASK_CONFIRM(ri, wj) = [ri,wj, E Pk

D. Remarks on Parameter Decision

There are several predefined parameters in our protocol
(e.g., Tunit»Tw, Tpusy). To make the task assignment results
better, it is important to select those parameters properly.
However, since the actual situation in real world is complex
and changeable, it is difficult to deduce optimal parameter
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Requester 2

Requester 1

Worker 1

Fig. 3: A running example.

values theoretically. Therefore, it is more practical and com-
mon to determine these parameters based on past experience,
and various scenarios and requirements. For example, if our
protocol is applied to a take-out delivery scenario, since
workers may move quickly through electric vehicles and travel
a short distance, Tw, Tp,sy can be decided as smaller values
(e.g., 10 minutes or 20 minutes). If our protocol is used in
some spatial crowdsourcing scenarios that take a long time and
require loose time limit (e.g., the requester requires multiple
workers to come to a specific location to take pictures),
Tw, Tpusy can be preset to be larger values (e.g., 1 hour).

E. Running Example

We give a running example to explain how PriTA works,
especially the waiting mechanism and the backoff mechanism.
The example is shown in Figure 3 and the corresponding time
line is depicted in Figure 4a and Figure 4b. The capacity of the
task ¢;; and the capacity of the worker c,,; are both set to 1.
We assume workers have infinite moving range R,,;. We also
ignore the message transmitting time and computation time.

We first illustrate the backoff mechanism by analyzing
worker 1, requester 1, and worker 3 in Figure 4a. Suppose at
time t,, worker 1 and worker 3 receive the DIST_CONFIRM
message, they will start to wait until 7, + 7,,. Since neither
of them receives other tasks, they will start to backoff to
requester 1 at 7, + T;,. As worker 1 is closer to requester
1, task 1 will be assigned to it, and worker 3, once hearing
the TASK_PROPOSAL message from worker 1, will abort the
backoff to requester 1.

Second, we explain how our waiting mechanism works in
Figure 4b. Suppose task 1 is generated before task 2. Therefore
worker 2 will first receive the DIST_CONFIRM message from
requester 1 at time point ¢,. It then starts to wait. During
the waiting time f, + T,,, worker 2 receives task 2, and the
DIST_CONFIRM message for task 2 is received at time #p.
When the time reaches ¢, + T,,, worker 2 cannot receive any
new arrival tasks. Since worker 2 is closer to task 2, it will
select task 2 to perform. Thus, worker 2 will wait until #; +T,,
and send TASK_PROPOSAL message to requester 2 at that
time.

IV. ANALYSIS OF PRIVACY PRESERVATION

We show in the following two theorems that PriTA is
privacy preserving for both workers and requesters, disclosing

1 Worker2 R 2

=

Worker 1 Requester 1 Worker 3

\

TASK_RELEASING |- ===
ENCRYPTED DIST «

DIST_CONFIRM |- - - -
t tq

a

Ly

Ty

to+ Ty

thackoff I

TASK_PROPOSAL - ===
TASK_CONFIRM [~ ==

t,+T,
thackoff

thackoff

\,__, Backoff

aborted

(a) Backoff mechanism. (b) Waiting mechanism.

Fig. 4: Basic procedure.

no entity’s exact location information to any other parties
inside the system.

Theorem 1. The real location of each worker will not be
disclosed to other workers and requesters under the PriTA
framework.

Proof. The message that contains the location information
for a worker w; is in ENCRYPTED_DIST message. Without
loss of generality, assume w; communicates with requester
ri, thus only r; can successfully decrypt Eepkri (zij) in EN-
CRYPTED_DIST, because no party else has the corresponding
homomorphic decryption key dsk,,. Even if there is a third
party eavesdropper listening all the transmission messages,
it can not derive the real location of a worker. As for the
requester r;, even though it can decrypt E.pk,, (zi;), it can
only learn whether w; is capable to do his task and not be
able to derive the worker’s location based on the decrypted
data.

In Step 4, the requesters will receive TASK_PROPOSAL
messages from different workers based on various backoff
time. However, the unit backoff time 7,,; is only known
by workers. Furthermore, influenced by the real network
environment (e.g. network congestion degree), the real backoff
time for each worker might be different from the theoretical
value. Due to the above two reasons, a non-colluded requester
hence has nearly no chance to deduce the distance between
itself and the workers who send TASK_PROPOSAL messages
to it. Even though a requester can infer the distance between
workers and itself, it cannot further deduce the exact location
of any worker. This is because, firstly, a requester and its
task are in the same location. Secondly, since the RA only
authorizes each requester/worker with one identity, and re-
questers are honest but curious, a requester cannot break the
protocol and create multiple fake identities or tasks in different
locations at the same time in order to learn the exact location
of a specific worker.

In summary, the location privacy for every worker can be
well protected in the PriTA framework. O

Theorem 2. In the PriTA framework, the real location of each
task will not be compromised to other workers and requesters
before the task assignment and will only be revealed to the
workers who will perform that task.
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Proof. The location for a task #; is encrypted as Eepk,, (s,),
and is packaged in TASK_RELEASING message then sent to
surrounding workers. Other parties who have overheard this
message cannot decrypt it as the homomorphic decryption
key dsk,, is only held in requester r;. Due to the existence
of the RA and the assumption that workers are honest but
curious, they have to obey the protocol and cannot fake
their locations or create multiple identities. Thus, by receiving
DIST_CONFIRM from a requester r;, a worker w; can only
derive the distance between itself and the requester d;; but
no more information, hence cannot know the exact location
of the task. Other workers, requesters and even eavesdroppers
even cannot derive the distance because they don’t know the
decryption key for that worker, sk, and don’t know the
moving range of worker w;. Finally, the location of a task #;
in E P, (It,) in the TASK_CONFIRM message sent from r;
can only be obtained by worker w ;, who is willing to perform
1;, since only w; has the decryption key sk, .

According to the above proof, the PriTA framework can
protect the location privacy for any task before the task
assignment and the real location for a task will only be released
to a worker who is willing to do it. |

It is worth mentioning that the revelation of the real lo-
cation after task assignment is inevitable, as workers need
to physically move to the task locations. This, however, is
widely accepted in the literature [25], [29], [26]. Also, as
mentioned before, we mainly consider the privacy threats
posed by internal entities, i.e., workers and requesters, and
security attacks from external malicious attackers are not
our concern. Having said that, even though there are some
attackers who are eavesdropping our system, they still can
learn nothing about the exact locations of tasks or workers.
This is because messages containing location information are
encrypted in every single step, and the decryption key is held
only by the corresponding worker or requester. Moreover,
even though a few eavesdroppers have the ability to learn the
backoff time of each worker, a non-colluded attacker cannot
further infer the distances between tasks and workers. While
a colluded external attacker can only deduce the distances
between tasks and workers but nothing more beyond that.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PriTA. The
main results are summarized as follows: (1) PriTA achieves
better privacy preserving performance compared with differ-
ential privacy-based scheme (DP) under the same setting. (2)
Despite being fully distributed, PriTA makes near-optimal
task assignments close to the centralized global optimum
under various practical scenarios. The design of wait-and-
decide and proportional-backoff schemes help to improve the
task assignment results dramatically. (3) The computational
complexity and the communication overhead of PriTA are
practical in real system.

A. Experimental Setup

Datasets: Our evaluation is based on the Google Cloud
NYC Taxi and Limousine Commission (TLC) dataset [1],
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which contains hundreds of thousands of trips completed by
taxis. In this case, the TLC drivers are workers located at
the drop-off sites; the TLC passengers are requesters located
at their pick-up sites. Tasks are generated in an order of
their pick-up times. Workers are always online during the
experiments except they are performing tasks during the busy
time Tp,sy. We also consider to use three auxiliary dataset
to demonstrate the performance of our system, i.e., a T-Drive
dataset [26], a NYC Citi Bike Trips dataset [1], and a Gowalla
dataset [19].

Settings: In the experiments, by default, we randomly
sample 300 requesters and 300 workers from the dataset. We
set the moving range of the worker R; to be a random integer
within 5 km. We assume a uniform message transmission
range across all requesters and workers, ie., R, = Skm.
This is a practical setting due to the advanced long-range
wireless data communication technology [2]. The capacity of
the task c; and the capacity of each worker c,, can be different
(heterogeneous) or uniform (homogeneous). The default values
for ¢; and ¢, is 10 and 2, respectively, which could be
considered as each task has 10 subtasks and requires at most
10 workers to perform, and each worker can do at most 2
subtasks among them. We assume Poisson task arrivals where
the arrival interval A is by default set to 10 s. The maximum
waiting time 7,, and the busy time of workers Tp,, are both
set to 10 minutes.

In our experiments, we assume a stable network envi-
ronment where the message transmission time is negligible
compared with the unit backoff time 7y,;;. We make this
simplified assumption because the main focus of this work
is to make effective task assignment while preserving location
privacy, rather than task assignment in various network envi-
ronments. That being said, in practice, the backoff time can be
empirically determined based on the network delay measured
in real scenarios. We shall leave the evaluation in real network
environment as a future work.

Baselines: We evaluate the performance of our solution
PriTA against three baseline schemes: (1) the state-of-the-art
differential privacy-based scheme (DP) [26], (2) the global
optimal scheme (OPT), which leverages a global manager
overseeing all the requesters and workers to make the optimal
task assignment periodically, (3) and PriTA with no backoff
(PriTA-NB), in which the workers send TASK_PROPOSAL
messages without conducting backoff proportional to the dis-
tance in Step 4, and the requesters receive TASK_PROPOSAL
messages and choose workers randomly. Comparison with
PriTA-NB can help quantify the benefit brought by the backoff
mechanism.

Metric: We use four metrics, the privacy preserving level,
the total number of the assigned tasks, the computation time,
and the communication time, that respectively evaluate the
privacy preserving performance, task assignment performance,
computational cost, and the communication overhead.

B. Privacy Preserving Evaluation

Methodology: We compare PriTA with DP on T-Drive
dataset to evaluate the privacy preserving performance. We
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Fig. 5: Privacy preserving evaluation.

use precisely the same settings as those in the system DP

(e.g. ¢; =1 and c,, = 1) to make our comparison results more

convincing. We use privacy preserving level as the primary

metric, which is defined as the probability that the real location

of the privacy-protected user cannot be correctly inferred.
For PriTA, the privacy preserving level is given by

r2

— 1)
&~ (dij —1)?

Lprita=1=Ppriva(r,dij) =1~
Because in PriTA, a worker can derive the distance d;;
between itself and the requester. The real location of the
requester falls into a circle centered at the worker’s location.
Therefore, the probability that the real location can be guessed
out (falls into a small circular area with radius r) equals to
the area of the small circle over the area of the already-known

. . 2
annulus related with d;;, i.e. PpiTa(r,dij) = m.
In DP, the privacy preserving level is given by

LDP=1—PDP(r)=(1+%r)~e—§r. (14)

In DP, each location of the worker or task is protected by
reporting a perturbed location point generated by adding a
Planar Laplace noise into the original location. According to
[3], the probability that the true location falls in a circle around
the perturbed point with radius r is given as Ppp(r) = 1 —
(1+%7)- e R,

To compare PriTA with DP, we change the parameters (e.g.
moving range R;) to guarantee that PriTA achieves the same
number of assigned tasks as DP, we then compare the privacy
preserving level. We set r = R, and d;; will change with R;.
We also compare the number of assigned tasks when privacy
preserving level for the two schemes keeps the same.

Results: Figure 5a shows that PriTA achieves higher privacy
preserving level than DP, meaning that an attacker has a lower
chance to make a successful guess that a real location falls in
a certain circle in PriTA. Figure 5b shows that PriTA achieves
better performance on task assignment when PriTA and DP
protect the same level of privacy. The reason behind is that our
scheme provides accurate distance for the workers compared
with DP, and effective task assignment usually highly relies
on the distance information.

C. Task Assignment Evaluation

We compare the number of assigned tasks among OPT,
PriTA and PriTA-NB, under various scenarios, and draw

TABLE II: Average computation time of a requester.

Eel?kr[ (lti) Ddxk"i (Eepkrl. (Zij)) Epkwj (Zi’i)
unit time 4.0588 0.4233 2.0574
(ms)
total time 4.0588 26.4563 19.0310
(ms)

TABLE III: Average computation time of a worker.

Eepk,, (Lw;) | computation | 5 (Epko. (zi1))
Eepk,, (R;) | on ciphertext Plowj APl 151
unitame |- 56 7.7330 0.4329
(ms)
total time | 379 7653 | 4859518 4.004
(ms)

the conclusion that PriTA attains near-optimal performance,
significantly outperforming PriTA-NB.

Methodology: We run the experiment under various scenar-
ios: (1) varying worker’s capacity, while keeping the capacity
of all the workers the same (Figure 6a); (2) varying task’s
capacity, while keeping the capacity of all the tasks the same
(Figure 6b); (3) varying both capacity, while the capacity
among different workers and tasks are different (Figure 6c),
the capacity of both workers and tasks is varied within the
range of 1 to x; (4) varying task arrival interval (Figure 6d);
(5) varying worker’s moving range (Figure 6e); (6) varying
number of requesters/workers (Figure 6f). Except for the TLC
dataset, we also repeat all the above experiment on Gowalla
and NYC Citi Bike dataset. Due to page limit, we only show
the number of assigned tasks against task/requester’s capacity
under heterogeneous scenario (Figure 7).

Results: (1) All the figures in Figure 6 show that PriTA
achieves relatively good assignment results compared with
OPT, the gap is mainly due to that in the fully distributed
scenario no one has the global view of the system. Moreover,
the naive PriTA-NB acts as the worst as the best worker has
no priority and the other workers cannot smartly switched
to a suitable task via backoff overhear and abortion. (2)
The number of the assigned tasks increase with the worker’s
capacity, task’s capacity, task arrival interval, worker’s moving
range and the number of workers/requesters for all three
schemes. Because by increasing any of the above parameters,
the potential matching tasks will increase. (3) Figure 7 shows
that in Gowalla and NYC Citi Bike datasets, the performance
trend under varying parameters is similar as in TLC dataset,
which means that our scheme is not sensitive to parameters or
dataset, thus is applicable for a wide range of scenarios.

The number of assigned tasks in Figure 6 and Figure 7
are observed to be larger than 300. The reason is that each
task’s capacity c; could be larger than 1, hence the number
of assigned tasks is actually the number of assigned subtasks,
which could be far more larger than 300.

D. Computation Cost Evaluation

Methodology: We evaluate the computation cost of the
workers and requesters in our proposed PriTA framework.
Specifically, we record the time cost for encryption, decryp-
tion, and computation on the ciphertext during the whole
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Fig. 7: Dataset evaluation.

procedure. The experiment is run on a desktop with an Intel
Core CPU 2.7GHz processor and an 8GB RAM running
Ubuntu 14.04.

Results: The average computation time of a single requester
is shown in Table II. The task location is encrypted only
once so the time cost for Eepk,, (I;;) is the same between
the total time and the unit time, while DdSkr,-(Eepkri(Zij))
and Ep, (zi;) have to be done multiple times for different
workers thus resulting the difference between the total time
and unit time. Generally speaking, homomorphic encryption
cost 10x longer time than homomorphic decryption for a single
operation.

Table IIT shows that, for a single worker, the computation
time is mainly spent on encrypting /,, and R; and computing
on the encrypted distance result in Step 2. The total compu-
tation time for both workers and requesters is less than one
second, which is acceptable and feasible in practice.

E. Communication Overhead

Methodology: We measure the communication cost for
all the workers and requesters in our PriTA system. More
specifically, we evaluate the total data size each worker and
each requester needs to send and receive in every step.

Results: The results of our communication cost evaluation
are shown in Table IV and Table V. The sizes of the data that
are transmitted in our experiments are all below few kilobytes,
which represents that our PriTA provides a relatively low and
practical communication overhead. Specifically, in Table IV,
the TASK_RELEASING and DIST_CONFIRM messages that
a requester sends have much smaller size. The reason is that
these two messages are sent by broadcast thus don’t need
to be sent multiple times for different workers. While for
a worker, it will receive multiple TASK_RELEASING and
DIST_CONFIRM messages from different requesters, leading
to a bigger received data size for TASK_RELEASING and
DIST_CONFIRM in Table V.

VI. RELATED WORKS

In this section, we review the literature from the follow-
ing three aspects: task assignment in spatial crowdsourcing,
location privacy preserving in spatial crowdsourcing and fully
distributed crowdsourcing.

Task Assignment in Spatial Crowdsourcing: Many stud-
ies have focused on how to assign tasks in spatial crowdsourc-
ing. Kazemi, et al. [16] classifies spatial crowdsourcing into
two modes: Worker Selected Tasks (WST) mode and Server
Assigned Tasks (SAT) mode, where workers positively select
tasks in WST and negatively wait for tasks to be assigned
by server in SAT. Studies on SAT [16], [30] generally aim to
maximize the number of assigned tasks by the server, while
works on WST [8], [6] target at maximizing the number of
completed tasks selected by workers. Only a few studies [9],
combine SAT and WST together, in which the server first
assigns tasks to workers then workers select the tasks he can do
to maximize the number of the final completed tasks. However,
all of the aforementioned works rely on a server and neither
of them considers to protect the location privacy of workers
or tasks.
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TABLE IV: Average communication overhead of a requester.

TASK_RELEASING
(send)

ENCRYPTED_DIST
(receive)

DIST_CONFIRM
(send)

TASK_PROPOSAL
(receive)

TASK_CONFIRM
(send)

overall data size

(K B) 0.09

5.02

0.17 0.71 0.42

TABLE V: Average communication overhead of a worker.

TASK_RELEASING [ENCRYPTED_DIST |DIST_CONFIRM | TASK_PROPOSAL | TASK_CONFIRM
(receive) (send) (receive) (send) (receive)
overall data size
(K B) 5.63 5.02 1.58 0.71 0.42
Location Privacy Preserving in Spatial Crowdsourcing: ACKNOWLEDGEMENT

To protect the location privacy in spatial crowdsourcing,
existing works mainly leverage k-anonymity or differential
privacy techniques. M. Gruteser et. al. [12] use k-anonymity
to achieve location privacy for a worker, which requires a
server to obfuscate an area containing the worker’s location
and the positions of k — 1 other workers. In [25], the authors
propose to use a differential privacy technique called PSD [7]
to protect the location privacy of workers, while it needs a
trusted third party to sanitize the collected location information
of workers. A local differential privacy technique named geo-
indistinguishability [3] is leveraged in [29], [26] to protect the
locations of both tasks and workers, however, they still require
a server to match different tasks with workers based on the
obfuscated locations. In [18], the authors use homomorphic
encryption to encrypt the locations of both workers and tasks,
thus achieve the protection of location privacy. In their work,
two servers are needed and they have to communicate with
each other multiple times to exchange information in order to
assign tasks to proper workers. All the above-mentioned works
requires a centralized server to guarantee privacy preserving,
which is not applicable in fully distributed crowdsourcing
systems.

Fully Distributed Crowdsourcing: Recently, a few works
start focusing on fully distributed, self-organized crowdsourc-
ing. W. Chang, et al. [5] proposes a distributed and self-
organized crowdsourcing scheme within mobile social net-
works, in which the requester positively sends the task to the
potential workers via multi-hop social contacts. In [23], a self-
organized mobile crowdsourcing paradigm is proposed, where
a mobile requester can proactively crowdsource his task by
leveraging the encountered workers at real-time. However, the
protection of location privacy is beyond their consideration.

VII. CONCLUSIONS

In this paper, we proposed a novel privacy-preserving frame-
work PriTA for spatial crowdsourcing, which performs task
assignment in a fully distributed manner without disclosing
location information. PriTA uses homomorphic encryption to
protect the location privacy for both tasks and workers. We
proposed a distributed protocol achieving efficient task assign-
ment based on exchanges of encrypted messages between re-
questers and workers. Evaluations driven by real-world dataset
demonstrated that despite of being fully distributed, PriTA
achieves more efficient task assignment at the same level of
location privacy compared with existing works.

This work was supported in part by the National
Natural Science Foundation of China under Grant No.
61701216, Shenzhen Science, Technology and Innova-
tion Commission Basic Research Project under Grant No.
JCYJ20180507181527806, Guangdong Provincial Key Lab-
oratory (Grant No. 2020B121201001) and "Guangdong
Innovative and Entrepreneurial Research Team Program"
(2016ZT06G587) and the "Shenzhen Sci-Tech Fund" (KYT-
DPT20181011104007).
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