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Abstract—Motion tracking is an important aspect of human-
computer interaction (HCI) and recent research focuses on
motion tracking using earphones’ embedded acoustic sensors.
However, these solutions can only be deployed on wired ear-
phones, while most of the commercial earphones are wireless
ones. This limitation arises because wireless earphones utilize the
Bluetooth Low Energy (BLE) protocol for handling audio data,
which blocks the usage of existing acoustic sensing solutions.
Firstly, the low sampling rate of BLE prevents the system from
processing high-frequency ultrasounds. However, the sensing
signal for earphones must be ultrasonic to prevent disturbance
to the user. Secondly, BLE employs an audio compression
process that is applied with different compression rates with
different bandwidths. This will break the structure of wideband
signals usually used for acoustic sensing. To overcome these
challenges, we present BLEAR, the first earphone-tracking
system compatible with the BLE audio recording protocol.
To let BLE earphones receive ultrasounds, BLEAR utilizes a
specially designed bandwidth conversion scheme that uses a
mask signal to trigger a non-linear effect that converts high-
frequency components to low-frequency ones, thereby overcom-
ing the low audio sampling rate restriction of BLE. Additionally,
by strategically designing beacon signals to align with BLE’s
subband compression pattern, BLEAR mitigates the influence
of audio compression and achieves accurate wireless earphone
tracking. We implement a wireless earphone prototype for
BLEAR and conduct extensive experiments involving 8 subjects
to demonstrate its feasibility. The experimental results show that
BLEAR achieves a mean distance tracking error of 3.37 cm, an
angle tracking error of 5.3 degrees, and an accuracy of 97.14%
in recognizing 7 common user activities. This work not only
introduces a BLE-compatible earphone tracking solution but
also establishes a foundation for broader BLE device tracking
applications.

Index Terms—Human-computer interaction, earphone, mo-
tion tracking, BLE

I. INTRODUCTION

Motion tracking plays an important role in human-
computer interaction (HCI). Among these motion-tracking ap-
plications, researchers are particularly interested in earphone-
based tracking because the user’s attention can be inferred
from the ear position, thus providing context-aware interaction
for the user [1]. An example of such an application is depicted

This research is supported in part by RGC under Contract CERG
16204820, 16206122, AoE/E-601/22-R, Contract R8015, and 3030 006.

in Fig. 1 where the user is walking close to or away from
a desk. To enhance the interaction experience, it is necessary
to sense the activity of walking close to or away from the
desk. Earphones, especially wireless earphones, are suitable
for detecting these movements because they are popular acces-
sories and are firmly attached to the user. Therefore, the user’s
activity can be derived by tracking the earphones’ movements.

A large amount of research effort has been devoted to
designing earphone tracking methods. There are three major
lines of research towards this direction based on the three types
of signal that an earphone can capture: Bluetooth received
signal strength, inertial measurement units, and acoustic sig-
nals. First, since wireless earphones use Bluetooth Low Energy
(BLE) protocol to transmit data with other devices, some
works leverage BLE received signal strength (RSS) to achieve
device tracking [2], [3]. Although these works demonstrate the
usability of using the BLE signal to infer location information,
these designs are restricted by the granularity provided by the
BLE RSS signal. They can only estimate the general trending
of the distance changes but not track the earphone’s location
quantitatively. Second, some earphone products are equipped
with inertial measurement units (IMUs) [4]. These IMUs are
shown to be able to perform motion tracking [5]–[7] through
processing the accelerometer, gyroscope and magnetometer
readings. However, pure IMU-based head tracking systems
are erroneous since the on-body IMUs are intrinsically noisy
because of the unconscious and inevitable motion artifacts
[7]. Also, IMU-based solutions can only determine human-
centered motions. Therefore, they cannot distinguish whether
people are walking closer to or farther from an object. In
addition, the IMU-based method cannot be widely adopted
because most commercial earphones are designed without an
IMU.

Recent works have shown that acoustic signals can be
leveraged to track earphones or other mobile devices equipped
with microphones [1], [8]–[12]. The working scenario for
these systems is described as follows. An anchor device con-
stantly transmits beacon signals such as frequency-modulated
continuous wave (FMCW) and continuous wave (CW) signals.
The microphone on the tracked mobile device receives the bea-
con signals, and the device decodes the location information
from the beacons. We exclude the designs that let the mobile
device transmit beacon signals and let the anchor device
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receive the beacons [13]. This is because the earphone speaker
has extremely low power and transmits sound towards the
user’s ear canal rather than the air such that the beacon cannot
reach the anchors. Although these works demonstrate the high
accuracy of acoustic-based device tracking, there is one major
limitation that prevents the wide deployment of these designs
- These designs can only be applied to wired earphones where
the earphones are connected to smartphones or laptops that are
equipped with a rather powerful audio processing module. For
wireless earphones, which are more commonly seen in recent
years, these solutions are unusable. This is because wireless
earphones have limited computation power and use the BLE
protocol to handle audio data. It imposes two challenges that
prevent using acoustic-based tracking methods, as Fig. 2
shows. First, to avoid disturbing the user while tracking the
earphones, the beacon signal must be inaudible (≥ 17 kHz).
However, the maximum audio sampling rate under BLE is 16
kHz, which means the earphone can only handle audio signals
below 8 kHz, let alone the ultrasonic beacons. Second, BLE
adopts an audio compression strategy, subdividing the audio
band into several subbands. Suppose a large-bandwidth beacon
signal is used, and it is within the acceptable bandwidth under
the BLE protocol. It will be divided into several subbands
and processed with different compression rates, making its
structure greatly affected and hard to perform tracking.

In this work, we resolve the above challenges and design
an earphone tracking system that, for the first time, can be
used with worn wireless earphones. As Fig. 3 shows, to
break the low sampling rate constraint, we design a frequency
conversion scheme that takes advantage of the microphone’s
non-linear frequency response that can help convert the high-
frequency component to the low-frequency band when mixed
with a properly designed mask signal. This way, the earphone
can capture high-frequency signals even if they are beyond
the Nyquist frequency limit. Readers can refer to Section III
and Section IV for more details. To resolve the second chal-
lenge, we observe that although the entire frequency range is
subdivided, the subdivision pattern is consistent as long as the
BLE configuration is unchanged. Therefore, we can carefully
select the narrow-band segments that remain complete after
the subdivision for motion tracking.

We present BLEAR, the first wireless earphone tracking
system that is compatible with BLE recording protocol with
minimal hardware add-on. To utilize BLEAR, we need to set
up a pair of speakers as the anchor to transmit 18.5 kHz and
19.1 kHz ultrasonic beacons separately. Meanwhile, in order
to let the BLE earphone receive these ultrasounds, we propose
to attach a miniature piezoelectric (PZT) transducer to trigger
the non-linear effect that converts the high-frequency beacons
to the low-frequency range. The rationale behind this design is
that the PZT transducer emits a 20.3 kHz mask signal, which,
when mixed with the two ultrasonic beacons, will produce
low-frequency components because of the nonlinearity of the
microphone. Notably, the two beacons in our design are used
because they are necessary to achieve 2-dimension motion
tracking of the earphone.

(a) (b)

Fig. 1. People walk close to/away from his/her desk.

The contributions of this work are summarized as follows.
• To the best of our knowledge, BLEAR is the first

earphone tracking system that can be truly deployed
on wireless earphones under the BLE audio recording
protocol. This design can potentially be extended to many
tracking systems that involve a BLE device.

• We propose several technical designs to overcome the
challenges brought by the BLE protocol, including a fre-
quency conversion scheme that uses a mask signal-based
nonlinearity system to convert high-frequency audio into
the low-frequency band to break the restriction of the
low audio sampling rate of BLE, and carefully designed
beacon signals to bypass the influence of BLE audio
compression.

• We build a wireless earphone prototype to demonstrate
the feasibility of BLEAR. We conduct extensive ex-
periments with 8 subjects to show the performance of
BLEAR. The experiment result shows that BLEAR can
achieve accurate location tracking with a mean error of
3.37 cm, an angle tracking error of 5.3◦ and a mean
accuracy of 97.14% for recognizing 7 common user
activities.

II. BACKGROUND

In this section, we will give some background knowledge
of BLE earphones and acoustic sensing. This knowledge will
help to understand the design of BLEAR.

A. Bluetooth Earphones

Bluetooth Low Energy (BLE) is a wireless communication
technology designed for short-range communication between
devices. It is commonly used in various applications, including
wireless earphones. Usually, wireless earphones rely on the
BLE protocol to exchange data with other devices, such as
smartphones, tablets, or laptops.

Some studies [13] have achieved motion tracking by
utilizing BLE earphones as speakers. However, this approach
requires users to handle the earphone, rendering it unusable
solely as an audio device. The high sampling rate of 48 kHz
can be achieved when the earphone is used for audio play-
back only, but the sampling rate decreases significantly when
recording is necessary. Wireless earphones rely on protocols
like Hands-Free Profile (HFP) or Headset Profile (HSP) for au-
dio data exchange. These protocols support bidirectional audio
communication for phone calls and voice chat applications,
but they only support mono channel recording at a maximum
sampling rate of 16 kHz. This limited sampling rate restricts
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Audio compression in BLE transmission.

Low sampling rate
(16/8 kHz)

Fig. 2. The low audio sampling rate and audio compression of BLE pose
limitations that prevent the acquisition of the original signal when using
wireless BLE earphones for acoustic sensing.

Bandwidth convertor
(Mask signal)

⊕

Channel compression-agnostic beacons

Source signals
(Specially selected CWs)

Fig. 3. Our system overcomes the limitations of BLE by utilizing a mask
signal and a specially designed source audio signal.

the ability to capture ultrasound frequencies, which may be
necessary for certain sensing tasks.

To best utilize the transmission bandwidth, BLE will
apply compression to audio data. A typical compression
algorithm includes Continuous Variable Slope Delta mod-
ulation (CVSD), Low-Complexity Subband Coding (SBC)
and modified Sub-Band Coding (mSBC). Of these, we are
particularly interested in mSBC as it is widely used in BLE
recording protocols. The encoding process of mSBC involves
dividing the audio signal into multiple subbands and applying
compression to each subband. Each subband is compressed
using different parameters, resulting in varying degrees of
compression. As a result, mSBC significantly impacts both
the audio signal quality and the system’s sensing ability.

The low sampling rate and audio signal compression
make BLE hard to use in practical acoustic sensing systems.
However, in BLEAR, we aim to overcome these limitations
by leveraging the non-linear effect and employing specially
designed signals. Our goal is to achieve effective acoustic
sensing within the constraints imposed by BLE.

B. Acoustic Sensing and Motion Tracking

Recent research has shown that sensing systems can be
designed on commercial mobile devices that are equipped with
speakers and microphones. They transform the device into a
sonar system by reprogramming the speaker and microphone
to sense user actions.

Various signals are designed for acoustic sensing. Con-
tinuous Wave (CW) is the most frequently used one that
contains a single-frequency, continuous cosine signal. CW
is usually used in motion tracking because it can track the
distance change by manipulating the phase of the signal [14].
Frequency Modulated Continuous Wave (FMCW) signal is
also commonly used for sensing. It is a special continuous
wave signal with varying frequencies. It can be used to
measure the range and velocity of objects [8].

Acoustic sensing systems typically utilize acoustic sig-
nals above 17 kHz because they are inaudible to users. To
accommodate these signals, a sampling rate larger than 34
kHz is required. A common configuration for sampling rate in
audio systems is 44.1/48 kHz. Additionally, acoustic sensing
systems rely on original acoustic signals for modulation and
demodulation processing, which is achieved through Pulse
Code Modulation (PCM) for audio playing and recording in
normal systems.

The CW signal is highly effective and straightforward for
acoustic motion tracking. Several studies [10], [12], [14], [15]
have demonstrated that CW can be utilized for phased-based
distance tracking and strength-based angle tracking. Therefore,
by solely employing the CW signal, it is possible to achieve
accurate motion tracking.

1) Phase-based distance tracking: Phase-based distance
tracking relies on utilizing the phase of a sound wave to
accurately track distances. Several studies [14], [15] have suc-
cessfully implemented various systems based on phase-based
distance tracking, achieving impressive levels of accuracy,
even at the millimeter-level.

The fundamental concept behind phase-based distance
tracking is relatively simple. Suppose we have a speaker
emitting a sine wave at frequency f1 and a microphone
receiving this signal. The distance between the speaker and
the microphone can be determined by analyzing the phase of
the sine wave. By measuring the change in phase, we can
calculate the corresponding change in distance, enabling us to
track the object’s motion accurately.

In detail, we know the correlation between changes in
distance and phase:

∆d =
∆ϕ

2π
∗ λ =

ϕd2 − ϕd1

2π
∗ λ. (1)

Here, λ = vs/f1 represents the wavelength, where vs is the
speed of sound in air. In this context, ϕd1 and ϕd2 represent the
phase before and after the movement, respectively. When the
phase undergoes a change of 2π, it corresponds to a distance
change equal to one wavelength λ.

By knowing the phase change, denoted as ∆ϕd = ϕd2 −
ϕd1, we can utilize Equation 1 to derive the change in distance
and effectively track the distance.

2) Strength-based angle tracking: There is a straightfor-
ward method to achieve angle tracking by sensing the sound
field generated by two speakers [12]. In our system, we utilize
two speakers that emit sine waves at distinct frequencies to
generate the sound field. One speaker emits a sine wave at
frequency f1, while the other emits a sine wave at frequency
f2. The combination of these two sine waves creates the sound
field, which can be detected by a microphone placed within
it.

When the phase difference between these sine waves is
0, indicating that they are in phase, constructive interference
occurs, resulting in a high sound strength detected by the
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microphone. Conversely, when the phase difference is π,
indicating that they are out of phase, destructive interference
occurs, leading to a low sound strength detected by the
microphone. Essentially, the distribution of sound strength in
the field is uneven due to the phase difference.

If f1 = f2, the phase difference is solely caused by differ-
ences in location, resulting in a static sound field. However, if
f1 ̸= f2, the phase difference is influenced by both location
and time, creating a dynamic sound field. In practice, the sound
field appears to ”rotate” around the center.

Within the rotating sound field, a stationary microphone
detects changes in sound strength. The frequency of these
strength changes is denoted as f0 = |f1 − f2|. If the mi-
crophone is in motion, the observed frequency of the sound
field strength changes. A moving microphone will record a
signal with a period larger or smaller than the standard period
T0 = 1

f0
. By calculating the difference in periods ∆T , we

can determine the angular speed and ultimately achieve angle
tracking.

III. BEACON AND MASK SIGNAL DESIGN

Our system, BLEAR, is specifically designed to achieve
motion tracking using the BLE protocol, despite its limitations
such as a limited sampling rate and audio compression. To
overcome these limitations, BLEAR leverages the non-linear
effect of the recording system and carefully considers the
design of the beacon and mask signals. In this section, we
provide a description of the non-linear effect and then explain
the signal design of BLEAR in detail.

A. Nonlinearity of Recording Systems

In a recording system, the recorded signal ideally should
be proportional to the input signal. However, due to imperfect
microphone implementation, the recording system may exhibit
nonlinearity. By leveraging this nonlinearity, we can sense
higher frequency components with a restricted sampling rate.
We give the rationale for this nonlinearity-based frequency
conversion as follows.

Assume our system’s beacon signal is a cosine wave with
frequency f :

S(t) = cos(2πft+ ϕ) (2)

For an ideal recording system, the received signal is:
Sr(t) = AS(t) = Acos(2πft+ ϕ) (3)

where A is a fading factor. If we consider nonlinearity, the
actual received signal is:

S′
r(t) =

∞∑
n=0

AnS(t)
n (4)

where n is the order of the polynomial and An is the corre-
sponding fading factor. To trigger the frequency conversion of
a nonlinear system, we also transmit a mask signal, which is a
cosine wave with frequency fm. Therefore, the signal reaching
to the microphone is

S(t) = cos(2πft+ ϕ) + cos(2πfmt+ ϕm) (5)

After the nonlinear transfer function of the recording system,
the received signal becomes S′

r(t) =
∑∞

n=0 AnS(t)
n. For

simplicity, we only consider the first two orders of the poly-
nomials:
S′
r(t) =A1S(t) +A2S(t)

2

=A1[cos(2πft+ ϕ) + cos(2πfmt+ ϕm)]

+A2[cos(2πft+ ϕ) + cos(2πfmt+ ϕm)]2

=A1[cos(2πft+ ϕ) + cos(2πfmt+ ϕm)]

+A2[
cos(4πft+ 2ϕ)

2
+

cos(4πfmt+ 2ϕm)

2
+ cos(2π(f + fm)t+ (ϕ+ ϕm))

+ cos(2π(f − fm)t+ (ϕ− ϕm))]

(6)

In the recording system, the signal will be then sent to an
Anti-Aliasing Filter (AAF). Typical, AAF is a low-pass filter at
half of the sampling rate fs. Thus, all components with higher
frequency than fs

2 will be removed. If |f−fm| < fs
2 < f, fm,

the remaining signal is:
S′
r,AAF (t) = A2cos(2π(f − fm)t+ (ϕ− ϕm)) (7)

This way, the original transmitted signal with frequency f
will be converted to |f − fm|. Therefore, by leveraging the
nonlinearity of the recording system and a mask signal, we can
make the acoustic system sense a signal at frequency |f−fm|
and its phase ϕ − ϕm. Note that we have |f − fm| < fs

2 <
f, fm. It means that we can sense the phase change even if
the signal frequency is beyond the Nyquist frequency fs

2 .

B. BLEAR Signal Design

As discussed in Section II-A, there are two main restric-
tions of BLE: low sampling rate and audio signal compression.
We need to overcome these two restrictions through beacon
and mask signal designs.

To address the low sampling rate limitation, we leverage
the nonlinearity of the recording system. As explained Sec-
tion III-A, even with a low sampling frequency, if there are
two signals present - a target signal at frequency f and a mask
signal at frequency fm - such that |f −fm| < fs

2 < f, fm, we
can still detect the phase change ϕ−ϕm and perform distance
tracking.

To overcome the signal compression imposed by BLE, we
avoid using complex signals such as FMCW. This is because,
as mentioned in Section II-B, the BLE audio compression
algorithm, known as subband coding, divides the audio into
several frequency bands and applies different compression
ratios to each band. If a wideband signal like FMCW were
employed, spanning across multiple frequency bands, it would
be significantly affected by the compression algorithm. Con-
sequently, CW signals are employed for motion tracking, as
they are less susceptible to the impact of the compression
algorithm. CW signals operate at a single frequency, making
it easier to avoid the frequency range between two subbands.

In addition, BLE typically divides audio data into 4/8
subbands during mSBC compression. We carefully select the
frequencies of the CW signals to stay clear of the cutoff
frequencies of these subbands. In order to ensure that the
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Fig. 4. System Overview.

signals remain inaudible to humans, it is recommended to use
frequencies above 17 kHz. Also, the available bandwidth of
a commercial audio system is up to 24 kHz because of the
typically used 48 kHz sampling rate, the frequency range of
the CW signals should be within 17 to 24 kHz. However, it
is important to note that frequencies near the upper limit (24
kHz) should be avoided, as conventional speakers typically
have a poor frequency response in that range.

IV. SYSTEM DESIGN

In this section, we will begin by providing an overview
of the system. Following that, we will introduce the details
of BLEAR. We will then delve into the process of how we
handle the received audio data and extract motion tracking
information. Lastly, we will introduce the activity recognition
component, which is built upon the motion tracking results.

A. System Overview

Fig. 4 presents an overview of the BLEAR system,
which consists of three main parts. The first part, ”Transmitter
Speaker,” includes a pair of speakers that play CW signals at
distinct frequencies f1 and f2. The second part, ”Receiver
Earphone,” consists of BLE earphones that receive acoustic
signals and transmit the data to a processing device using
the BLE protocol. The last part, ”Recording and Processing
Device,” is connected to the earphones and is responsible for
recording and processing the received audio data. This device
further enables motion tracking and activity recognition.

1) Transmitter Speakers: In our system, we utilize a
transmitter that plays two sine waves at distinct frequencies.
This allows us to achieve both distance and angle tracking. By
utilizing stereo mode, we can easily control the left and right
channels to transmit CW at 18.5 and 19.1 kHz independently.

2) Receiver Earphone: We need to generate a mask signal
at the receiver end in order to account for the nonlinearity
introduced in Section III-A, as Fig. 5(a) shows. The phase we
sense is given by ϕ− ϕm, where ϕ is the phase of the target
signal and ϕm is the phase of the mask signal. Both the target
signal and the mask signal contribute to the resulting phase. In
order to achieve distance tracking based on the target signal,
we need to ensure that ϕm remains constant. To achieve this,
we have chosen to use a PZT transducer to generate the mask
signal near the earphone microphone. By keeping the PZT
transducer and the microphone relatively static, we can ensure
that ϕm remains constant, allowing us to derive ϕ from ϕ−ϕm

and further track the distance based on the target signal.
The PZT transducer can be driven by a voltage signal, and

we utilize a channel of a 3.5mm audio playback jack to drive

the PZT transducer. We have found that the PZT transducer
performs well in the frequency range of 15-21 kHz, with a
central frequency of 18 kHz.

Specifically, in the BLEAR system, the beacon signals are
configured as CW signals with frequencies of f1 = 18.5 kHz
and f2 = 19.1 kHz, resulting in a frequency difference of f0 =
|f1−f2| = 0.6 kHz. The mask signal, on the other hand, is set
as a CW signal with a frequency of fm = 20.3. As a result,
the signals used to derive the phase are at frequencies of 1.2
kHz and 1.8 kHz. It is important to note that these frequencies
are not unique. We can choose other frequency combinations
as long as they meet the requirement of the frequency range
mentioned above and Section III-B.

B. Motion Tracking
The recording and processing device used in our system is

typically a laptop, which is connected to the receiver BLE
earphone. As mentioned in Section III, we have opted to
use CW acoustic signals as the sensing signal in our motion
tracking system due to the limitations of BLE. Consequently,
we have implemented two tracking methods: phase-based
distance tracking and strength-based angle tracking.

One major challenge in implementing these methods is
the requirement for calibration between the transmitter and
receiver. This is necessary due to slight variations in clock fre-
quencies among different devices, which can lead to frequency
shifts. To overcome this challenge, a clock calibration system
is utilized. Initially, the system searches for a motionless data
segment, which is easily identifiable as frequency-induced
motion is typically minimal and consistent. This segment is
then used to compute the frequency difference between the
known playback frequency and the recorded frequency.

The obtained frequency difference from calibration is sub-
sequently utilized in distance and angle estimation to improve
the accuracy of the results. By incorporating the frequency
shift, the system can compensate for any discrepancies and
achieve more precise tracking. It’s important to note that
all calibration processes are conducted on the recording and
processing device, as illustrated in Fig. 5(b).

The first step in both distance and angle tracking is pre-
processing, which involves filtering the received signal using a
bandpass filter to remove irrelevant noise. For instance, if we
want to derive the distance from f1 using a mask signal fm,
the central frequency of the bandpass filter would be |f1−fm|.

After the pre-processing stage, the BLEAR system utilizes
phase-based distance estimation and strength-based angle es-
timation separately, as mentioned in Section II-B to derive
accurate motion tracking results. While it is possible to derive
distance and angle at the same rate as the audio sampling rate
(typically 8/16 kHz), it is not necessary to maintain such a
high derivation rate for our system. Instead, we can average
the values and reduce the derivation rate to 50 Hz, which
enhances stability and accuracy.

C. Activity Recognition
After estimating motion tracking results, we obtain the

results for distance and angle tracking. These measurements
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Fig. 5. System details.

Fig. 6. An example of a person coming back to his computer.

can be utilized to analyze user activity. An example application
scenario is the automatic lock and resume feature on a com-
puter, as depicted in Fig. 1. Our objective is for the computer
to perceive our actions, such as automatically locking when
we leave and resuming when we return.

In addition to leaving and returning, there may be instances
where individuals simply stand up without walking away. In
such cases, the computer should not lock itself. Similarly, if
a user passes by without sitting down, the computer should
not resume. To account for these practical scenarios, we have
designed seven activities: standing up, sitting down, walking
away, walking close, standing up and walking away, walking
close and sitting down, and passing by.

Furthermore, we have identified several significant features
that can effectively differentiate between different activities.
For instance, in Fig. 6 we observe the distance change when
a user wearing a BLE earphone returns to their computer. This
scenario can be divided into two stages: walking close and
sitting down. The speed at which these stages occur differs
significantly, which aids in distinguishing between activities.

After careful consideration, we have opted to employ the
K-Nearest Neighbors Algorithm (KNN) as our classification
algorithm. It has proven to be both efficient and accurate for
this particular scenario. We have selected 12 features to serve
as inputs for the KNN algorithm. These features and their
explanations are summarized in Table I. By employing the
KNN classifier, we can achieve precise activity recognition,
thereby facilitating the implementation of practical BLE ear-
phone sensing applications. The performance of our system

TABLE I
FEATURES USED IN THE KNN CLASSIFIER.

Feature Explanation
Direction Overall motion direction (closer/further).
Length Distance travelled.
Angle Angle travelled.
Time Time consumed.
Speed @ 1/4 Speed at 1/4 of the whole journey.
Speed @ 3/4 Speed at 1/4 of the whole journey.
Acceleration @ 1/5 Acceleration at 1/5 of the whole journey.
Acceleration @ 2/5 Acceleration at 2/5 of the whole journey.
Acceleration @ 3/5 Acceleration at 3/5 of the whole journey.
Acceleration @ 4/5 Acceleration at 4/5 of the whole journey.
Jerk∗@ 1/4 Jerk at 1/4 of the whole journey.
Jerk @ 3/4 Jerk at 3/4 of the whole journey.

∗ The derivative of acceleration.

(a) Transmitter. (b) Receiver.

Fig. 7. Transceivers. (a) Transmitter: laptop & speaker. (b) Receiver:
Raspberry Pi & Reapeaker Kit.

will be discussed in detail in Section VI.

V. IMPLEMENTATION

Our system implementation consists of two parts, trans-
mitter and receiver. The transmitter utilizes a basic stereo
speaker, while the receiver is implemented using the Respeaker
Kit [16]. Further details regarding the implementation of the
system will be discussed in the following sections.

A. Transmitter

Our system uses stereo mode to control a pair of speak-
ers, allowing simultaneous playback of two sine waves. One
speaker plays a sine wave at frequency f1 while the other
plays a sine wave at frequency f2. For convenience, we use a
pre-generated file in the form of a .wav file. We use a laptop
as the speaker controller, primarily for playing back the pre-
generated two-channel audio file.

We use the ”Philips SPA20” speaker (Fig. 7(a)) in our
system. To set up the speaker system, we position the speakers
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on either side of a laptop, approximately 40 cm apart. This
arrangement ensures a stereo effect, particularly useful when
the laptop has downward-facing speakers.

B. Receiver

At the receiver end, we need a PZT to generate mask signal
and BLE earphones to receive signal.

A PZT transducer can be directly powered by a voltage
signal. We use one channel of a 3.5 mm headphone jack
to drive a thin PZT transducer. The central frequency of the
PZT that we use is 18 kHz. Thus it has good performance at
ultrasound frequency band. The PZT transducer is placed near
the microphone to ensure relatively strong signal strength.

For BLE earphones, initially we implemented our system
on commercial BLE earphones such as the Apple AirPods2
[17]. We found that we could achieve motion tracking only
some of the time. The signal strength varies extensively, even
when the earphones are stationary. We surmise that this is
caused by denoising algorithms, which sometimes reduce the
received signal. Unfortunately, we are not able to disable
these algorithms as they are embedded in the firmware and
cannot be accessed. Thus, we have implemented a separate
BLE earphone without additional audio processing such as
denoising using a Raspberry Pi and Respeaker. We then
connect a computer to these simulated ”BLE earphones” and
record the audio data.

As shown in Fig. 7(b), the PZT transducer is attached to
the back of a microphone. The microphone, in turn, is attached
to a commercial BLE earphone casing. It is important to note
that the BLE earphone is non-functional; its purpose is solely
to provide a wearable form factor for the microphone.

VI. EVALUATION

This section reports our extensive experiments that evalu-
ate BLEAR’s feasibility. We first give an overview of the core
evaluation results of this work. Then we report the detailed
experiments and findings.

A. Overview

We conduct two series of experiments to extensively
evaluate the performance of BLEAR in a real-world setting.
In the first evaluation, we assess BLEAR’s performance in
motion tracking regarding angle and distance estimation. The
result shows that BLEAR can achieve errors of 3.37 cm and
5.3 degrees in distance and angle estimation, respectively. In
the second evaluation, we design a classifier to recognize
the earphone wearer’s daily activities, and the result shows
that BLEAR can recognize seven common activities with an
accuracy of 97.14%.

B. Motion Tracking Performance

In this section, we evaluate BLEAR’s performance in
estimating two separate motion metrics, namely, distance
estimation and angle estimation. For these tests, the speakers
and earphone are placed on the ground, ensuring they are at
the same height and get the best performance.

1) Distance Tracking Error: To accurately measure the
distance tracking error respective to the anchor speakers,
we use a linear actuator with a stepper motor to control
the movement of the earphone. This linear actuator can be
programmed to follow a predefined movement pattern, offering
a high level of accuracy at the millimeter scale. Consequently,
it serves as the ground truth for changes in distance. The
errors are calculated as the absolute differences between the
measured distance changes and the corresponding estimated
values. While conducting the experiments, we align the linear
actuator with the perpendicular bisector of the two anchor
speakers to ensure consistency. To ensure reliability, distance
measurements are repeated 9 times at each distance. Fig. 8
shows the experimental results. Specifically, Fig. 8(b) shows
the distance estimation errors at different distances. We find
the result is quite encouraging that the mean error is within
3.37 cm and, notably, when the earphone is within 1.5 m with
respect to the anchors, the mean error is as low as 2.24 cm.

While we do not offer a quantitative comparison, it is
worth noting that the similarly designed system in [12], which
however does not incorporate BLE, also achieves cm-level
distance tracking error. Instead, the CAT system [8], which
also does not incorporate BLE, by incorporating synchroniza-
tion between transceivers, can achieve accuracy up to 5 mm,
surpassing the performance of BLEAR. Thus, even though
BLEAR incorporates BLE, it can achieve comparable accuracy
compared with normal acoustic motion tracking systems.

2) Angle Tracking Error: To assess the angle tracking
performance, we let the earphone move in an arc-shaped
motion within a fan-shaped area in front of the speaker, with
the speaker as the center. The error is measured as the differ-
ence between the estimated angle and the established ground
truth. To establish the ground truth angle measurements,
designated points are marked on the ground. The earphone,
held by a human, then transits between these points, allowing
measurement of angle changes as the ground truth. To ensure
reliability, these measurements are also repeated 9 times. It
is worth noting that the ground truth angles are taken at
different distances in order to show how the distance between
the earphone and the anchors affects the angular accuracy. Fig.
9 shows the angle estimation error statistics. Specifically, Fig.
9(b) shows the relationship between angle estimation error
and distance. It is observed that within a particular range, our
system achieves an extremely low mean estimation error of 1.9
degrees. Nevertheless, this error increases up to 11.9 degrees
as the distance continues to increase. The overall estimation
error in the range of 2 m is 5.3 degrees.

C. Activity Recognition Performance

In addition to separately tracking the raw earphone’s angle
and distance, we design a classifier that can predict the
earphone-wearer’s activity based on the sensed distance and
angle changing patterns as described in Section IV. In this
section, we evaluate the performance of BLEAR’s activity
recognition accuracy. The speakers are placed beside a laptop
on the desk and the earphone is worn by the subjects. We
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Fig. 9. Angle estimation error.
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Fig. 11. Activity recognition accuracy with different users and iterations.

have recruited 8 subjects to participate in this experiment.
For each subject, we ask him/her to perform the seven target
activities (labeled from 1 to 7), namely, standing up, sitting
down, walking away, walking close, standing up and walking
away, walking close and sitting down, and passing by, and each
subject is asked to repeat the above activities for at least five
rounds. In total, we have collected 210 samples. As discussed
in Section IV, the prediction of these activities is accomplished
using a KNN classifier. We use leave-one-subject-out (LOSO)
cross-validation to evaluate the classification performance. Fig.
10 shows the confusion matrix of the classification result.
The precision, recall and F1-score are 97.30%, 97.14% and
97.18%. In general, all the activities can be distinguished from
the others with high accuracy. Note that ’sit down’ could be
misclassified into ’walk close’ in some cases, and similarly,
some ’pass by’ samples are misclassified into ”walk close”.
This is because these activities are similar in nature, and it
can be hard to distinguish them.

Additionally, we conducted an evaluation of several impact
factors that could potentially affect the accuracy of activity
recognition. The results, which illustrate the activity recogni-
tion accuracy for different users, are presented in Fig. 11(a).
The accuracy ranges from 88.2% to 97.1% with the original
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Fig. 12. Activity recognition accuracy with different factors.

data. It is worth noting that each user has unique walking and
sitting patterns, leading to variations in accuracy. To address
this, newly recognized data is incorporated into the training
dataset, enabling the optimization of recognition parameters of
each user, just as Fig. 11(b) shows. As a result, an enhanced
accuracy of over 93% is achieved for all users.

Fig. 12(a) illustrates the activity recognition accuracy in
different rooms. These rooms are: 1. a 6m x 10m meeting room
with desks and chairs; 2. a 5m x 5m semi-open space; 3. a 2m
x 6m room with many of objects inside; 4. a 10m x 20m office
space. These rooms have different sizes and item placements,
resulting in different acoustic interference. The results indicate
consistently good accuracy across all rooms, with accuracy
consistently above 90%. In Fig. 12(b), we present the accuracy
of recognition under the influence of noise at different levels.
The noise is played by a speaker and comprises multiple
types of sounds, such as music, speech, and machine-generated
noise. The final accuracy is an average of multiple tests.
However, due to the similarity in frequency bands employed
by BLEAR and ambient noise, simply applying a filter is
insufficient to solve the noise problem. The accuracy decreases
to 40% with noise at 80 dB. To address this, we integrated
noise-affected data into the training dataset, resulting in an
accuracy of 88% at 80 dB of noise. Although slightly lower
than the accuracy without noise, this level of accuracy is still
acceptable considering the target scenario of a normal office
environment.

VII. DISCUSSION AND LIMITATIONS

a) Limitations: Although this is the first work to
achieve earphone tracking under the BLE audio recording
protocol, there are limitations in our current design and
implementation. Tracking distance. We use the microphone’s
nonlinearity to convert the high-frequency beacon signal to
the low-frequency band. However, the signal power after this
conversion is largely reduced because of the nature of the
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nonlinear effect. Therefore, the effective sensing range is
limited to 150 cm. Future designs may use speakers with larger
power to extend the sensing range. Beacon design. As dis-
cussed in Section II, the BLE employs an audio compression
strategy to reduce data traffic which will, in return, damage the
continuity of the bandwidth. To bypass the influence of audio
compression, we carefully select 3 frequencies and use single-
frequency continuous wave (CW) signals as the beacon signal.
However, previous works have shown that wide-band signals,
such as FMCW, have better tracking ability. Therefore, future
work should also explore how to design wide-band signals
that are still functional after BLE’s audio compression. Noise.
BLEAR makes use of the acoustic signal within the frequency
range of 0.5 - 2 kHz (after non-linear effects). Unfortunately,
this range overlaps with human voice and ambient noise
commonly encountered in daily life. Loud noises can cause
tracking failure and result in low recognition accuracy. While
we have taken speech noise into consideration during the
evaluation, we are unable to address continuous loud noises.
BLEAR has the potential to utilize frequencies up to 7 kHz
if speakers and microphones with a good frequency response
near 24 kHz are available.

b) Compatibility: Although we use a Raspberry Pi
to build our prototype, it is only used to simulate a BLE
earphone and does not apply any processing to the audio
signal. Thus, BLEAR can be easily deployed on a normal
BLE earphone, provided that the earphone does not process the
audio. Since our system is based on the BLE audio protocol,
it is compatible with audio applications such as phone calls.
However, the user’s voice during a phone call can interfere
with the motion tracking signals in our system, potentially
decreasing performance.

VIII. RELATED WORKS

In this section, we give an overview of the related work
of this study. We group the related works into two categories:
motion sensing systems and acoustic sensing systems.

A. Motion Sensing

Research in motion sensing is most related to this study.
We summarize the related works according to their sensing
modality. Computer vision. Computer vision (CV) methods
are most prevalent for human motion capture. Some works
[18]–[20] design methods to extract 3D human motion from
videos of RGB or depth camera. Bluetooth power. Recent
commercial products and research employ Bluetooth Low En-
ergy (BLE) Received Signal Strength (RSS) measurements to
estimate the approximate proximity between two devices [2],
[3]. IMU. Inertial measurement units, including accelerometer,
gyroscope and magnetometer, can be used to track motions.
In recent years, there has been research focused on pedestrian
dead-reckoning (PDR) [21], [22]. Alternatively, some works
[5], [23] use IMUs attached to headgear for head tracking
and detecting user attention. A number of eye-gaze tracking
systems [24], [25] have also adopted IMU-based compensatory
measures for head movement to enhance tracking precision.

B. Acoustic Sensing

The research community is particularly interested in lever-
aging acoustic signals to realize various kinds of sensing tasks
due to the wide accessibility of this signal. Here, we sum-
marize these works by their applications. Motion trakcing.
The solutions proposed in some works [8], [9], [12], [15],
[26] are device tracking systems that employ multiple speakers
to track a device that is equipped with a microphone. Apart
from device tracking, researchers are also interested in device-
free tracking designs. Recent studies [14], [27]–[29] proposed
motion-tracking solutions that can track hand, finger or human
body movements. These designs derive the motion of the target
object by analyzing the acoustic signals that are reflected by
the target object. Gesture recognition. AudioGest [30] and
RobuCIR [31] utilize a speaker-microphone pair to detect
alterations in Doppler shift or channel impulse response (CIR)
caused by hand movements to recognize different hand ges-
tures. Sensing on earables. Faceori [1] uses an acoustic rang-
ing method that involves the microphones and the headphone
and speakers on anchor devices to achieve user orientation
detection. EarphoneTrack [13] proposes an earphone tracking
system that overcomes practical challenges inherited from the
earphone’s form factor. EHTrack [10] presents an earphone
tracking system that can track the wearer’s location and head
orientation simultaneously. Nonlinearity. The feasibility of
using common off-the-shelf (COTS) microphones to record
over high-frequency components using nonlinearity is first
reported in Chen et al. [32]. They demonstrate that using a 48
kHz sampling rate microphone can sense the power spectrum
density (PSD) of signals at 60 kHz, which is over twice the
conventional sensible threshold.

IX. CONCLUSION

In conclusion, existing methods utilizing acoustic signals
for earphone tracking are infeasible for wireless earphones,
primarily due to their reliance on the Bluetooth Low Energy
(BLE) protocol for audio data transmission. BLE uses a
low audio sampling rate and implements audio compression,
which makes the existing solutions impossible to deploy.
This study introduces BLEAR to overcome these challenges,
presenting the first BLE-compatible earphone tracking solu-
tion. Through innovative approaches involving a nonlinearity-
triggering piezoelectric transducer and strategically designed
beacon signals, BLEAR enables wireless earphone tracking
while adhering to BLE protocol restrictions. A wireless ear-
phone prototype is implemented, and extensive experiments
involving 8 subjects are conducted to showcase BLEAR’s
practicality. The experimental results demonstrate that, in the
range of 2 m, BLEAR can achieve mean angle error of 5.3
degrees and distance tracking error of 3.37 cm. Moreover,
an accuracy of 97.14% in recognizing seven common user
activities can be achieved.
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