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ABSTRACT
Millimeter-wave (mmWave)-based human motion sensing, such
as activity recognition and skeleton tracking, enables many useful
applications. However, it suffers from a scarcity issue of training
datasets, which fundamentally limits a widespread adoption of this
technology in practice, as collecting and labeling such datasets
are difficult and expensive. This paper presents SynMotion, a new
mmWave-based human motion sensing system. Its novelty lies in
harvesting available vision-based humanmotion datasets, for know-
ing the coordinates of body skeletal points under different motions,
to synthesize mmWave sensing signals that bounce off the human
body, so that the synthesized signals could inherit labels (skele-
tal coordinates and the name of each motion) from vision-based
datasets directly. SynMotion demonstrates the ability to generate
such labeled synthesized data at high quality to address the training-
data scarcity issue and enable two sensing services that can work
with commercial radars, including 1) zero-shot activity recognition,
where the classifier reads real mmWaves for recognition, but it is
only trained on synthesized data; and 2) body skeleton tracking
with few/zero-shot learning on real mmWaves. To design SynMo-
tion, we address the challenges of both the inherent complication
of mmWave synthesis and the micro-level differences compared to
real mmWaves. Extensive experiments show that SynMotion out-
performs the latest zero-shot mmWave-based activity recognition
method. For skeleton tracking, SynMotion achieves comparable
performance to the state-of-the-art mmWave-based method trained
on the labeled mmWaves, and SynMotion can further outperform
it for the unseen users.
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1 INTRODUCTION
Sensing human motion, such as recognizing activities and tracking
body skeletons, enables many useful applications. The vision-based
methods by using cameras now can achieve accurate humanmotion
sensing [36], hinging on the availability of rich labeled datasets and
the innovation of machine learning [9, 10]. However, vision-based
methods are limited by inherent constraints [36, 48, 56], including
line-of-sight views, light conditions, privacy concerns, and more.

To cope with these limitations, emerging breakthroughs explore
Radio Frequency (RF) based solutions [23, 50]. One representa-
tive example is to use millimeter-wave (mmWave) from frequency-
modulated continuous-wave (FMCW) radars [56, 59, 61]. However,
unlike vision, mmWave-based training datasets are very scarce,
since collecting such data is labor-intensive and time-consuming,
and further labeling them, especially for fine-grained tracking ser-
vices, needs to tightly synchronize mmWaves with the data from
high-end cameras to collect the coordinates of skeleton points un-
der different motions [56], which is difficult and expensive [4]. It
limits the widespread adoption of mmWave sensing in practice.

In this paper, we propose a newmmWave-sensing system named
SynMotion to overcome this issue. The novelty of SynMotion is to
leverage available vision-based human motion datasets to synthe-
size mmWave sensing signals that bounce off human body. The syn-
thesized signals can then inherit labels (including both the coordi-
nates of body skeleton points under different motions and the name
of each motion) from vision-based datasets directly. We demon-
strate the ability to generate such labeled synthesized data at high
quality to address the training-data scarcity issue and enable two
useful sensing services that can work with commercial radars di-
rectly: 1) zero-shot activity recognition, where the classifier reads
real signals for recognition, but it is trained only on synthesized
data; and 2) body skeleton tracking with few-shot learning, which
can serve as a seed to further enable zero-shot skeleton tracking
designs in the future (§3).

Although some researchers have recently explored the signal
synthesis for mmWave-based sensing [18, 40], they have focused
on synthesizing certain sensing signatures derived from mmWave
signals, like the micro-Doppler spectrum [4, 39], little research has
been conducted on the synthesis of mmWave itself, which is where
various sensing signatures come from — their common source. If
other sensing signatures (such as heatmaps [61]) are required, or
even new signatures are proposed, they can be directly derived
from the synthesized mmWaves. Therefore, this paper provides a
significant leap and progress with the following significance:

1) Bootstrapping mmWave sensing at low cost. Due to the lack of
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training datasets, our design can reduce the expensive data collect-
ing and labeling overhead, which is a meaningful step in bootstrap-
ping the development of mmWave-based sensing systems. With
enough developments, more sensing data can be generated and
shared in our community to push this technique to maturity.

2) Enhancing sensing interpretability. We delve into the signal
itself, with great interpretability for mmWave-based sensing. This
ability could improve the performance of mmWave-based sensing
designs (§4) and facilitate the deployment of sensing systems in the
environments, from which it is not easy to deploy external cameras
to collect and label training data directly.

However, to reap these benefits, we need to address the following
challenges in the design of SynMotion.

1) Synthesizing mmWave sensing signals. Signal synthesis
is challenged by the inherent complexity of signal reflection and
blocking from various body parts. In SynMotion, by discretizing the
human body into a manageable set of parameters [42], we propose a
novel software pipeline to emulate the entire procedure from trans-
mission to reception of the synthesized mmWave signals bouncing
off the human body. This pipeline captures the core essence of
mmWave-based sensing. The synthesized signals can be used in a
zero-shot activity recognition design. They can further serve as a
solid foundation for more sophisticated sensing services.

2) Micro-level signal differences. Even though mmWave sig-
nals could be delineated, there are still unavoidable subtle differ-
ences compared to real signals due to high-order reflections, discrete
human models, and others. This could harm more sophisticated
(yet useful) sensing services [56, 61] like skeleton tracking — If we
train a skeleton tracker on the synthesized data and apply it to
real mmWaves directly, the tracking error is large (§4). In fact, this
is an emerging “synthetic-to-real” problem in the machine learn-
ing domain [9, 10], and the effective solution is to label a small
number of real data and design dedicated algorithms to fine-tune
neural networks trained on synthesized data. Radar can always
receive real mmWaves, but the key challenge is how to obtain the
skeleton point coordinates corresponding to these mmWaves (for
fine-tuning), which again requires expensive labeling overhead.

To address this challenge, we propose a novel training frame-
work. For the actual skeleton tracker, we introduce a variant for it.
The variant tracker has the same network structure as the actual
tracker but it takes user’s initial pose of each motion as an addi-
tional input. Both trackers are trained by the synthesized data first.
Because the initial body pose well describes a user’s body shape,
which is user-specific information and is provided explicitly, we
find that it makes the variant tracker have a good user-independent
feature after fine-tuning by using a third-party mmWave dataset,
denoted asRadarSet.1 Now, when we collect a few mmWaves from
the target users to fine-tune the actual tracker, we also record their
initial pose for each motion (such as using a smartphone to record
and extracting the pose from the image), which are fed to the vari-
ant tracker. Since the variant tracker has good user-independent
feature, it can directly estimate the skeleton point coordinates corre-
sponding to these collected mmWaves, and we treat such estimated
coordinates as pseudo labels to fine-tune the actual tracker. Because
1RadarSet contains the skeleton point coordinates under various motions from a group
of people and the mmWave sensing signals received at the same time, which are used
to fine-tune the variant tracker in SynMotion.
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Figure 1: Illustration of FMCW chirps in one frame.

the variant tracker needs the initial body pose very time, we only
use it as a coordinate generator to fine-tune the actual tracker.

If RadarSet is public available online, the training framework
above does not need to deploy any expensive cameras for the la-
beling purpose, i.e., nearly zero-shot training effort. Even though
target users’ body shapes and how they perform each motion may
not be the same as the people in RadarSet, fine-tuning of the actual
tracker can handle such differences well (§3). However, as far as
we know, there is no RadarSet available now. Hence, we take a
pioneer step and use our collected mmWaves to build one, which
could serve as a seed to attract more data contributions from our
community. Since we collect a few mmWaves to form the RadarSet
and use it to fine-tune the variant tracker in SynMotion, it results
in a few-shot skeleton tracking design in this paper.

To validate the efficacy of SynMotion, we develop a prototype
system using TI IWR1443BOOST radars. We also deploy an Opti-
Track system to collect the ground truth of skeleton coordinates for
evaluation. We have recruited 20 users (9 F and 11 M) to perform
eight activities. To launch the signal synthesis, we have adopted
both our collected vision-based dataset from OptiTrack and two
public datasets, NTU RGB+D [44] and CMU MoCap [13]. Extensive
results show promising performance. SynMotion achieves the aver-
age error of 5.8 cm to track 19 skeleton points. It is comparable to
the-state-of-the-art RF-Pose3D [61] with an error of 5.3 cm, which
is trained on the labeled real mmWaves directly. SynMotion can fur-
ther outperform it for the unseen users by 21% to 48%. For activity
recognition, SynMotion achieves 94.1% accuracy for zero-shot activ-
ity recognition, outperforming the accuracy of 84.9% by the latest
zero-shot design Vid2Doppler [4] that synthesizes micro-Doppler
spectrum directly. Our project site is at https://synmotion.github.io/.
In summary, this paper makes the following contributions:

• We propose to synthesize the mmWave sensing signals —
the source of various sensing signatures adopted before. Our
design can bootstrap mmWave-based sensing with largely
reduced training overhead and improving the performance
of various sensing services and applications.

• We propose a series of novel and effective technologies to
address two challenging issues, which are encountered in
synthesizing the mmWave sensing signals and developing
the more advanced skeleton tracking service.

• We develop a prototype system of SynMotion and conduct
extensive experiments. Results show promising performance
gains for both activity recognition and skeleton tracking
compared with the state-of-the-art methods.

2 PRELIMINARY
2.1 FMCW Radio
Frequency-modulated-continuous-wave (FMCW) is a technology
that can provide distance and velocity measurements of the targets.
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Figure 2: (a) Micro-Doppler spectrum derived from an
mmWave sensing trace for walking. (b) Four heatmaps de-
rived from four chirps from the walking motion trace.

FMCW radar transmits an FMCW signal called a chirp, which is
usually in an millimeter-wave (mmWave) frequency band, such as
77–81 GHz [22]. A chirp is a sinusoid with the frequency linearly
increasing over time, as shown in Figure 1, which can be character-
ized by a start frequency 𝑓0, bandwidth B and chirp duration T, for
example, 𝑓0 = 77 GHz, 𝐵 = 3.6 GHz and 𝑇 = 32 ms. Multiple (de-
noted as 𝐶 , such as 𝐶 = 128) chirps further form one frame. Each
received (Rx) chirp is a time-delayed version of the transmitted (Tx)
chirp. Radar circuit generates an intermediate frequency (IF) signal
of a constant frequency that equals to the frequency difference of
Tx and Rx chirps, based on which radar can determine the range,
velocity, and angle of the reflection object. More information on
FMCW radar can be found in [22].

2.2 Sensing Signatures and Applications

Sensing signatures. With the sensing ability of FMCW radar,
researchers have proposed to derive micro-Doppler spectrum and
heatmap two popular sensing signatures, derived from raw chirp
signals, and use them to enable various sensing designs.

1) Micro-Doppler spectrum is a 2D velocity-time sensing signature,
which is generated by the short-time Fourier transform (STFT) on
IF signals. One motion trace produces one such signature usually,
which can be treated as an 2D image (as depicted in Figure 2(a))
and is convenient to be processed by a neural network for activity
recognition. Existing mmWave synthesis works [4, 18, 39, 40] all
synthesize micro-Doppler spectrum directly.

2) Heatmap is also a 2D signature (Figure 2(b)), but it describes
the relationship between range and angle of the object. Specially,
a range-FFT operation is first performed on the IF signals from
each antenna to derive the range information, and the angle-FFT
operation is further applied to the corresponding peaks across
antennas to estimate the angle. As heatmaps are derived in a chirp
basis, onemotion trace usually produces a series of heatmaps, which
are widely used in skeleton tracking designs [56, 59, 61]. So far as
we know, heatmaps have not been synthesized in prior works yet.

Different from existing works, in this paper, we aim to synthesize
the “source” (i.e., the mmWave signal itself) of various signatures
to enable sensing services flexibly and also improve the sensing
performance. If new sensing signatures are proposed in the future,
they can be also derived from the synthesized mmWaves.
Applications. A wide spectrum of useful applications can be en-
abled by mmWave-based sensing, such as the monitoring of elderly
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Figure 3: Overview of the SynMotion architecture.

people, so that accidents can be detected in time yet without us-
ing video to jeopardize their privacy (e.g., in bathroom) [23], novel
HCIs that can augment systems like Kinect to work across occlu-
sions [59], virtual reality gaming [50], etc. When mmWave sensing
is mature in the future, it can be further applied for the more sophis-
ticated scenarios, e.g., the theft detection in shopping malls where
thieves likely cover their hand movements by clothes [56] or police
assessment of a hostage scenario behind a door [61].

SynMotion essentially rehearses mmWave-based sensing events.
Thus, it has the potential to enable more sensing services that might
not be feasible before, for example, rehearsing sensing performance
in different locations to determine the best radar location before
actual deployment. We will explore such possibilities in the future.

2.3 SynMotion Architecture
Figure 3 illustrates the architecture of the SynMotion design. With
the vision-based data, containing both the instant skeletal point
coordinates under different motions and the name of each motion,
the signal synthesizer emulates the mmWave sensing procedure
from the transmission to the reflection and receiving of mmWave
chirps (§3.1). With the received chirps, the synthesizer further de-
rives IF signals, which are used to generate various signatures for
different sensing purposes. The micro-Doppler spectrum obtained
from the synthesized mmWaves can be used to train a classifier for
zero-shot activity recognition first in SynMotion (§3.2.1).

The sensing signature generator further handles the micro-level
signal differences to enable skeleton tracking (§3.2.2). To address
this problem, we introduce a variant of the actual tracker in SynMo-
tion. The variant tracker is fine-tuned by using RadarSet and it can
replace external cameras to generate skeletal point coordinates for
fine-tuning the actual tracker. After fine-tuning, the actual tracker
can read real mmWaves for skeleton tracking. This design can avoid
deploying expensive cameras for the labeling purposes.

3 SYSTEM DESIGN
3.1 Sensing Signal Synthesizer
In this section, we formulate the procedure from the transmitted
mmWave FMCW signal to the received one after reflections on
human body to obtain the corresponding IF signal by using the
vision-based motion data. We introduce a synthesis pipeline with
the following steps in SynMotion.
1) Transmitted signal. For each transmitting (Tx) and receiving
(Rx) antenna pair, a transmitted FMCWmmWave is a sinusoidal-like
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Figure 4: (a) The shaded area under the transmitted chirps
represents the number of signal periods experienced since
the current frame starts. (b) Illustration of the IF signal.

signal [22]. To model it, we should consider time t across various
chirps within each frame. We suppose thatm chirps (0 ⩽𝑚 ⩽ 𝐶−1,
where 𝐶 is the number of chirps in one frame) have been sent out
in one frame and the current (𝑚 + 1)𝑡ℎ chirp is being transmitted
for time 𝑡𝑚 already. Thus, the time 𝑡 with respect to the beginning
of each frame and the instant frequency 𝑓 (𝑡) of the transmitted
chirp signal can be written as:

𝑡 =𝑚 ×𝑇 + 𝑡𝑚, and 𝑓 (𝑡) = 𝑓0 + 𝐵 × 𝑡𝑚

𝑇
, (1)

respectively, based on which we can then mathematically express
the transmitted mmWave signal 𝑆𝑇𝑋 (𝑡) = 𝐴 × 𝑒 𝑗𝜙 , where A is the
amplitude and 𝜙 is the phase.

As shown in Figure 4(a), the shaded area under all transmitted
chirps in the current frame, i.e.,

∫ 𝑚𝑇+𝑡𝑚
0 𝑓 (𝑥) · 𝑑𝑥 , represents the

number of signal periods experienced since this frame starts. Since
signal phase 𝜙 changes 2𝜋 after each period, we have

𝜙 = 2𝜋 (
∫ 𝑚𝑇+𝑡𝑚
0 𝑓 (𝑥) · 𝑑𝑥) + 𝜙0,

= 2𝜋 (
∫ 𝑚𝑇

0 𝑓 (𝑥) · 𝑑𝑥 +
∫ 𝑡𝑚
0 𝑓 (𝑥) · 𝑑𝑥) + 𝜙0,

= 2𝜋 (𝑚 (𝑓0 + 𝑓0 + 𝐵)𝑇
2 +

(𝑓0 + 𝑓0 + 𝐵
𝑡𝑚
𝑇
)𝑡𝑚

2 ) + 𝜙0,

= 2𝜋 (𝑓0𝑡 +
𝐵(𝑡2𝑚 +𝑚𝑇 2)

2𝑇 ) + 𝜙0, (2)

where 𝜙0 is the initial phase. Then, by substituting 𝜙 from Eq. (2)
into 𝑆𝑇𝑋 (𝑡) = 𝐴 × 𝑒 𝑗𝜙 , we obtain:

𝑆𝑇𝑋 (𝑡) = 𝐴𝑒 𝑗 (2𝜋 (𝑓0𝑡+
𝐵 (𝑡2𝑚+𝑚𝑇 2 )

2𝑇 )+𝜙0 ) . (3)

2) Received signal from a single reflection point. If the trans-
mitted signal 𝑆𝑇𝑋 (𝑡) is bounced off a single reflection point at
distance 𝐷 with respect to the receiving antenna, the received sig-
nal 𝑆𝑅𝑋 (𝑡) can be viewed as a time-delayed (and also attenuated)
version of the transmitted signal and latency 𝜏 is 2𝐷

𝑐 , where 𝑐 is the
light speed. Thus, the received signal 𝑆𝑅𝑋 (𝑡) can be expressed as:

𝑆𝑅𝑋 (𝑡) = 𝐴′𝑒 𝑗 (2𝜋 (𝑓0 (𝑡−𝜏 )+
𝐵 ( (𝑡𝑚−𝜏 )2+𝑚𝑇 2 )

2𝑇 )+𝜙0 ) , (4)
where A’ is the attenuated amplitude. It can be obtained according
to the radar communication principle [41]:

𝐴′ =
𝐺𝑇𝑥𝐺𝑅𝑥_

√
𝑃𝜎

(4𝜋)1.5𝐷2 , (5)

with Tx/Rx antenna gain𝐺𝑇𝑥/𝑅𝑥 , wavelength _, transmission power
𝑃 and radar cross section (RCS) 𝜎 . The parameters 𝐺𝑇𝑥/𝑅𝑥 and 𝑃

Forearm

Primitive Ellipsoid 
Model

Skeleton points (for tracking)

Reflection points (for synthesis)

Figure 5: The skeleton tracking design in SynMotion can
output 3D coordinates of 19 skeleton points over time. For the
signal synthesis, we adopt a pictorial body model composed
of primitive ellipsoids, e.g., illustrated for the fore-arm.

are determined according to radar configuration and the value of
RCS 𝜎 can be estimated after we introduce human body model.
3) IF signal from a single reflection point. When 𝑆𝑅𝑋 (𝑡) is
received, according to the working flow of FMCW radar, 𝑆𝑅𝑋 (𝑡) is
combined with the transmitted signal by a “mixer” to generate the
intermediate frequency (IF) signal 𝑆𝐼𝐹 (𝑡) [22], which is the signal
used by radar for sensing. The “mixer” measures the instantaneous
frequency and phase differences of these two signals, as depicted
in Figure 4(b). Thus, we can mathematically derive 𝑆𝐼𝐹 (𝑡) from a
single reflection point as follows:

𝐴′𝑒 𝑗 (2𝜋 (𝑓0𝑡+
𝐵 (𝑡2𝑚+𝑚𝑇 2 )

2𝑇 )+𝜙0−(2𝜋 (𝑓0 (𝑡−𝜏 )+ 𝐵 ( (𝑡𝑚−𝜏 )2+𝑚𝑇 2 )
2𝑇 )+𝜙0 ) ) ,

= 𝐴′𝑒 𝑗2𝜋 (𝑓0𝜏−
𝐵𝜏2
2𝑇 + 𝐵𝑡𝑚𝜏

𝑇
) , (6)

where the first term “2𝜋 (𝑓0𝑡 + 𝐵 (𝑡2𝑚+𝑚𝑇 2 )
2𝑇 ) + 𝜙0” is from 𝑆𝑇𝑋 (𝑡) in

Eq. (3) and the second term “2𝜋 (𝑓0 (𝑡 − 𝜏) + 𝐵 ( (𝑡𝑚−𝜏 )2+𝑚𝑇 2 )
2𝑇 ) + 𝜙0”

is from 𝑆𝑅𝑋 (𝑡) in Eq. (4) for this calculation.
4) Reflections from human body. With 𝑆𝐼𝐹 (𝑡) derived from a
single-point reflection in Eq. (6), we further extend it to the scenario
that the transmitted signal 𝑆𝑇𝑋 (𝑡) bounces off multiple points on
human body. To this end, we adopt the 3D pictorial representation
to model human body, composed of primitive ellipsoids to represent
each body part [51], where Figure 5 illustrates for the fore-arm. The
merit of using this model is that the core effect of the body reflection
can be described by using parameters explicitly, which are needed
in the subsequent signal synthesis.

For each part𝑘 of our body,𝑘 ∈ K = {𝑓 𝑜𝑟𝑒𝑎𝑟𝑚,𝑢𝑝𝑝𝑒𝑟𝑎𝑟𝑚, 𝑡𝑜𝑟𝑠𝑜,

𝑐𝑎𝑙 𝑓 , 𝑡ℎ𝑖𝑔ℎ, ℎ𝑒𝑎𝑑}, we consider a finite number of reflection points,
denoted as 𝑛 that balances a trade-off between the tracking accu-
racy and computation overhead as investigated in §4. For reflection
points from an ellipsoid, the estimation of radar cross section (RCS)
𝜎 in Eq. (5) has been investigated and included in the RCS handbook
H(·) [14, 40] before as follows:

√
𝜎 =

[ 1
4𝜋𝑅

4
𝑘
𝐻4
𝑘

𝑅2
𝑘
𝑠𝑖𝑛2\𝑘 + 1

4𝐻
2
𝑘
𝑐𝑜𝑠2\𝑘

] 1
2

𝑒− 𝑗 2𝜋
_
2𝐷 , (7)

where \𝑘 is the angle of the incident wave relative to the height axis
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Figure 6: For two activities (a) walking and (b) lifting a hand,
the 1𝑠𝑡 row shows the micro-Doppler spectrum derived from
our synthesized signal, and the 2𝑛𝑑 row shows the corre-
sponding micro-Doppler spectrum from real mmWaves.

of the ellipsoid with height𝐻𝑘 and radius 𝑅𝑘 . After 𝜎 is obtained, all
the parameters in 𝑆𝐼𝐹 (𝑡) from a single reflection point are known,
and the final IF sensing signal 𝑆 (𝑡) from each Tx-Rx antenna pair
can be obtained by:

𝑆 (𝑡) =
∑︁

𝑘∈K

∑︁𝑛

𝑖=1 𝑆
𝑖
𝐼𝐹 (𝑡), (8)

𝑠 .𝑡 . 𝑇𝑥 𝑎𝑛𝑑 𝑅𝑥 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑏𝑦 𝑏𝑜𝑑𝑦, (9)
𝜎 ∈ H (𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑), (10)

where only 𝑆𝑖
𝑇𝑋

(𝑡) and 𝑆𝑖
𝑅𝑋

(𝑡) not blocked by human body are
counted (this can be calculated in the next synthesis step) and
Eqs. (8)–(10) can be directly extended to multiple Tx-Rx pairs.
5) Signal synthesis with the vision-based data. In the formula-
tion above, we consider that the distance 𝐷 between each reflection
point and the receiving antenna is known. In the real signal synthe-
sis, each vision-based human motion dataset implicitly contains a
3D space, in which the coordinates of user’s skeleton points are rep-
resented. Then, for each snapshot (frame) of user’s body pose, we
can compute the coordinates 𝑟 (=< 𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 >) of each reflection
point on the user’s body (Figure 5) from the skeleton point coordi-
nates by interpolation when the ellipsoid parameters are known,
such as𝐻𝑘 and 𝑅𝑘 in Eq. (7). The length𝐻𝑘 of each body part can be
obtained from skeleton point coordinates and the ellipsoid radius
𝑅𝑘 is estimated through [49] in our current development.

Then, we can virtually deploy radar in this 3D space, where the
radar position is denoted as 𝑝 =< 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 >, and the distance 𝐷
is the Euclidean distance 𝑑 (·) from radar to each reflection point:

𝐷 = 𝑑 (𝑝, 𝑟 ) =
√︃
(𝑝𝑥 − 𝑟𝑥 )2 + (𝑝𝑦 − 𝑟𝑦)2 + (𝑝𝑧 − 𝑟𝑧)2,

based on which we can obtain each 𝑆𝑖
𝐼𝐹
(𝑡) to synthesize 𝑆 (𝑡) from

Eqs. (8)–(10) under various motions. Moreover, if any transmitted
or received signal intersects with a body part, it is excluded from
the synthesis. It is usually sufficient to deploy the virtual radar at
one position, which is consistent with where the radar is planed to
deploy in the real sensing field with similar facing direction and
working distance. Before we continue, we note three points:

i) Vision-based data selection.When we select motion data
from a vision-based dataset, the selected data should cover all the
motions to be tracked using mmWaves. SynMotion (and most ex-
isting mmWave-based designs [56, 59, 61]) currently cannot track
body poses well for the unseen motions.

ii) Domain differences. Even for the same motion, such as
walking, users in the vision-based dataset may not perform it in

Figure 7: Five heatmaps from our synthesized signals (the
2𝑛𝑑 row) and the corresponding real mmWave signals (the
3𝑟𝑑 row) in the motion of walking.

exactly the same way as actual users in real environments. In addi-
tion, the body shapes of dataset users may also be different from
actual users. They are the domain differences. The synthesized data
can teach a tracker how to work in the dataset domain and we then
can further compensate domain differences (§3.2.2) to adapt the
tracker to a real environment without expensive labeling overhead.

iii) Reflections from the environment. In signal synthesis,
we do not explicitly consider reflections from the environment,
such as nearby objects, due to two reasons. First, radars can be ini-
tially calibrated to remove most reflections from the environment.
Thus, the sensing signals mainly capture the user’s motions and
existing mmWave-based sensing systems [56, 59, 61] indeed show
good performance in the unseen environments directly after initial
calibration. We also show it in §4. Second, higher-order reflections
(from body to objects to radar) are much weaker than direct re-
flections, which are marginal for activity recognition and can be
compensated for the more complicated skeleton tracking (§3.2.2).

3.2 Sensing Signature Generator
The synthesized IF signal 𝑆 (𝑡) can be used to derive various sensing
signatures and enable different sensing services.

3.2.1 Sensing signatures. As a proof of concept, we examinemicro-
Doppler spectrum and heatmap two popular ones in this paper.
1) Micro-Doppler spectrum. We first investigate micro-Doppler
spectrum, which has been widely used for activity recognition [4,
18, 39, 40]. Figure 6 visualizes the results for two daily activities,
walking and lifting a hand. For each activity, the first row in Figure 6
shows the micro-Doppler spectrum derived from our synthesized
signal based on the vision-based data collected from OptiTrack. The
second row shows the micro-Doppler spectrum derived from the
real mmWave sensing signals that are received concurrently. The
experimental setup is detailed later in evaluation.

Recent studies [4, 39] have shown the possibility to synthesize
micro-Doppler spectrum directly using deep learning for a zero-
shot activity recognition, i.e., the classifier is trained by using the
vision-based data only and it can work with real mmWaves directly
after training. Figure 6 suggests that SynMotion can derive high-
quality micro-Doppler spectrum signatures from our synthesized
mmWaves, even if there are inevitable differences between the
synthesized signal and the received real signal, which can improve
the recognition accuracy significantly as revealed via evaluation.
2) Heatmap. Then, we investigate heatmap, which has been com-
monly adopted for skeleton tracking [56, 59, 61]. As introduced in
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Figure 8: Our “synthetic-to-real” training framework.

§2, a heatmap can be viewed as one 2D (distance vs. angle) image,
which is generated in a chirp basis. One motion trace usually pro-
duces a series of heatmaps. Figure 7 compares the synthesized and
actual heatmaps from five chirps from the motion of walking, which
are also similar to each other. However, as skeleton tracking is a
subtle sensing task, the micro-level differences between synthesized
and real signals can degrade tracking accuracy significantly. As
observed through experiments, if we develop a zero-shot skeleton
tracker directly, the tracking error is very large, e.g., 19.17 cm on
average. Therefore, we propose a novel framework in SynMotion
to further improve the tracking accuracy.

3.2.2 Generalization to real mmWaves for skeleton tracking. In fact,
the difference between the synthesized and real data is an emerging
“synthetic-to-real” topic from the transfer learning and domain adap-
tation fields [11, 38]. Recent machine learning studies have explored
effective solutions by labeling a few real data and then designing
efficient algorithms to fine-tune the neural network. Because the
neural network is pre-trained by synthetic data first, only a small
number of real data is needed for fine-tuning. After fine-tuning, the
network can work with the real data.
Problem. For skeleton tracking, we can ask users to perform var-
ious motions during the system setup phase. It is easy to collect
real sensing signals as radar always receives mmWaves when it is
working. The collection of fine-tuning data itself does not bring
much overhead, but the main challenge is how to annotate the
corresponding coordinates of skeleton points for these mmWaves
(to perform fine-tuning) if we do not deploy any external cameras
for labeling. Therefore, we cannot apply existing “synthetic-to-real”
methods directly and need to design a new solution in SynMotion.
Proposed framework. Figure 8 depicts the training framework
proposed in SynMotion, which contains two trackers. One is the
actual skeleton tracker T , and the other one is a variant tracker T𝑣
designed to assist the fine-tuning of the actual tracker.

• The actual tracker T is similar to most mmWave-based
tracker designs [56, 59, 61], which reads real mmWaves
(𝑚𝑤𝑡 ) as the only input to estimate the coordinate (𝑐𝑖𝑡 ) of
each skeleton point 𝑖 , i.e., T (𝑚𝑤𝑡 ) → {𝑐𝑖𝑡 }𝑁𝑖=1, where the
number of skeleton points 𝑁 is 19 in SynMotion.

• The variant tracker T𝑣 has the same network structure as the
actual tracker. However, in addition to mmWaves, it requires
a second input, i.e., the user’s initial body pose (𝑖𝑝) at the
start of each motion. This variant tracker is only used to
assist the fine-tuning of the actual tracker.

• Because the user’s initial body pose is provided, the variant

(a) Variant Tracker (b) Actual Tracker

Figure 9: Tracking errors of the variant tracker and the actual
tracker under different settings.

tracker is designed to output the displacement (𝑑𝑖𝑡 ) of each
skeleton point relative to its initial coordinate (the reason
is stated below), i.e., T𝑣 (𝑚𝑤𝑡 , 𝑖𝑝) → {𝑑𝑖𝑡 }𝑁𝑖=1.

2 Then, the
initial coordinate pluses a displacement also gives the instant
coordinate (𝑐𝑖𝑡 ) of each skeleton point, i.e., 𝑖𝑝 + {𝑑𝑖𝑡 }𝑁𝑖=1 →
{𝑐𝑖𝑡 }𝑁𝑖=1. Therefore, we still denote T𝑣 (𝑚𝑤𝑡 , 𝑖𝑝) → {𝑐𝑖𝑡 }𝑁𝑖=1.

Our training framework then follows three steps to generalize
the actual tracker T to the real mmWave sensing signals.

Step-1: The actual tracker T and variant tracker T𝑣 are first
trained on the same set of mmWaves synthesized from a vision-
based dataset, where the user’s initial pose of each motion trace
(needed by T𝑣 ) can be obtained from the initial coordinates of user’s
skeleton points. This step aims to train a primary version for both
trackers. So far, both trackers are not ready to work with real
mmWaves yet. As Figure 9 shows, without fine-tuning from next
two steps, their tracking errors are large, such as 4.72–9.34 cm.

Step-2: The second step fine-tunes the variant tracker T𝑣 only.
After this step, the variant tracker can perform skeleton tracking
on real mmWaves when given an initial pose of the user. The role
of a fine-tuned T𝑣 is to replace the external cameras to annotate the
corresponding skeleton point coordinates for the real mmWaves
used in the fine-tuning of the actual tracker in Step-3.

2.a) Fine-tune the variant tracker T𝑣 . If some people have labeled
and released an mmWave dataset RadarSet, containing the skeleton
points coordinates under various motions from a group of users
and the mmWave sensing signals received at the same time, we can
use RadarSet to fine-tune T𝑣 . We first assume that we had RadarSet
and how to obtain it is introduced later. A key observation in this
step is that after fine-tuning by RadarSet, the variant tracker can
work with real mmWaves to track unseen users (not in RadarSet)
well. Figure 9(a) shows that the tracking error of the fine-tuned
variant tracker on a set of unseen users is only 2.0–2.2 cm along
each axis. More experiments are conducted in evaluation (§4).

2.b) Why T𝑣 has this ability? Since the initial body pose, required
by the variant tracker T𝑣 , fully encompasses the user’s body shape,
such as arm and leg length, what the variant tracker T𝑣 has to
learn in the training or fine-tuning becomes “easier” than the actual
tracker T — the tracked body skeleton implicitly contains the body
shape information, which the actual tracker T needs to learn on
its own, but which is provided directly to the variant tracker T𝑣 . It
is why the error (“Not fine-tuned” in Figure 9) of the actual tracker
is much larger than the variant tracker when they are trained on
the same synthesized data and tested on the same unseen users.

2.c) Can we use RadarSet to fine-tune the actual tracker? Unfor-
tunately, this is infeasible due to the difference between T and T𝑣
2WiPose [23] also takes initial body pose as input and infers the displacement of each
skeleton point for Wi-Fi based body tracking, while our variant tracker exploits this
network structure to obtain a useful feature to fine-tune the actual tracker.
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stated in 2.b). In Figure 9, we use RadarSet to fine-tune the actual
tracker T and find that its tracking error is large when T works on
the same set of unseen users. Although the variant tracker becomes
relatively user-independent after fine-tuning, we cannot use it to
replace the actual tracker since T𝑣 needs initial pose every time,
while we can leverage its user-independent feature in the next step.

Step-3: The last step fine-tunes the actual tracker T . After this
step, T can use real mmWaves for skeleton tracking.

To train a tracker, existing designs [56, 59, 61] collect the real
sensing mmWaves from the target users in the field and further
deploy external cameras to label the coordinates of skeleton points
for these mmWaves. To avoid this deployment and manual labeling
efforts, we leverage T𝑣 to replace these cameras.

In particular, we collect a few real sensing mmWaves from the
target users and also record their initial body poses for each motion
(that can be captured by using a smartphone and extracted from the
image or manually measured), which are feed to the variant tracker.
As the variant tracker is user-independent, it can estimate the skele-
ton point coordinates for all these mmWaves, and we treat such
coordinates as (pseudo) labels to fine-tune the actual tracker. This
mmWave collection does not introduce much overhead, because
while a radar is working, it is constantly receiving mmWaves.

In summary, step-1 uses a large amount of synthesized data to
first teach the actual tracker how to track skeleton points from
mmWaves. The rest two fine-tuning steps use a few real mmWaves
to further close following two gaps, so that the actual tracker is
adapted from the synthesized data domain to the real data domain.

1) Body parameters. The physical parameters (such as arm and
leg length) of users from the vision-based dataset, and RadarSet may
differ from real users and real users are not required to be involved
in these two datasets. This difference is mainly compensated when
the variant tracker adopts the initial poses (that implicitly include
body parameters) of the real user to generate corresponding pseudo
labels to fine-tune the actual tracker.

2)Motions. Even though the data selected from the vision-based
dataset and RadarSet covers all the motions to be tracked using
mmWave, i.e., no unseen motions, real users may perform each mo-
tion differently from both datasets. This is the essential difference
between synthesized and real data, which is mostly compensated
by fine-tuning itself, since data from real users is adopted.

RadarSet. It is an important dataset in this framework, containing

• 1) skeleton point coordinates under various motions, and
• 2) mmWave sensing signals received at the same time.

RadarSet is only used to train the variant tracker T𝑣 . If such a
dataset is public available online, the entire training in SynMotion
does not need the deployment of external and expensive cameras
for labeling purposes, and skeleton trackers can be developed by
reusing RadarSet and our framework directly, i.e., a nearly zero-
shot training effort. However, to our best knowledge, there is no
such a dataset right now. To take a pioneer step, we deploy an
OptiTrack and radar to label such a dataset, which thus results in a
few-shot training in this paper. This dataset can serve as a seed to
attract more data contributions (to cover more activities and user
body shapes). With an enriched RadarSet, a variant tracker with
better user-independent ability can be obtained after fine-tuning,
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Figure 10: Skeleton tracker design, which reads heatmaps as
input to estimate the 3D coordinates of 19 skeleton points.

which can facilitate skeleton tracker development in the future.

Network design of skeleton tracker. After we obtain training
and fine-tuning data with SynMotion, we find that it is enough
to design a simple and compact neural network to achieve good
skeleton tracking, which is easy to train and converge. Figure 10 il-
lustrates our current development. The network reads 2D heatmaps
derived from chirps as input and outputs the estimated 3D coordi-
nates of 19 skeleton points. The variant tracker has a same network
structure, but it takes user’s initial pose as an additional input.

The main rationale of this network design in Figure 10 is to
extract the spatial features from each heatmap (like a 2D image)
first and then explore the temporal features cross heatmaps (to
capture the continuous motions) before the estimation of skeleton
points. Following this principle, the network contains four blocks:

1) CNN blocks. We utilize the ResNet-10 backbone [19] with five
stacked CNNs. They take 𝑈 (e.g., 𝑈 = 100) heatmaps {𝑥𝑡 }𝑡=1:𝑈
as input to extract the input spatial features 𝑧𝑡=1:𝑈 , where 𝑥𝑡 is
the concatenated heatmaps (𝑥𝑡 =< 𝑥ℎ𝑡 , 𝑥

𝑣
𝑡 >) of two individual

heatmpas 𝑥ℎ𝑡 and 𝑥𝑣𝑡 obtained from horizontal and vertical radars,
respectively. The reason of using ResNet-10 is to avoid the vanishing
gradient problem with multiple CNN layers [19].

2) RNN blocks. For mmWaves, human body usually acts as a
reflector rather than a scatter. Therefore, only a subset of reflected
mmWaves are received by radars [3], and we need to further con-
sider the relationship of chirps over time. To this end, we feed the
features 𝑧𝑡=1:𝑈 extracted from CNNs to LSTM layers to produce
the spatial-temporal features {𝑓𝑡 }𝑡=1:𝑈 .

3) Attention block. Because the meaningful information resides
in a small part on each heatmap, we add an attention block to let
network concentrate on such meaningful parts more effectively.
Attention [37] is a technique using dynamic weights to prioritize
the more crucial parts from the extracted features. In Figure 10, the
attention weight vector𝑤𝑡 is multiplied to 𝑥𝑡 to update this input,
i.e., 𝑥𝑡 = 𝑤𝑡𝑥𝑡 , before the CNN blocks.

4) MLP layer. The multi-layer perception (MLP) finally predicts
𝑈 snapshots of the 3D coordinates {𝐶𝑡 }𝑡=1:𝑈 of 19 skeleton points
from𝑈 input heatmaps, where 𝐶𝑡 = {𝑐𝑖𝑡 }19𝑖=1 and each 𝑐𝑖𝑡 is the 3D
coordinate of skeleton point 𝑖 .

To train each tracker, we introduce two loss functions in our
current implementation. The first loss L𝑑𝑖𝑠 aims to make the esti-
mated coordinates 𝑐𝑖𝑡 similar to their corresponding labels 𝑐𝑖𝑡 , where
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Radar
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Figure 11: Illustration of our testbed.

the difference can be measured by their Euclidean distance:

L𝑑𝑖𝑠 =
1
𝑈

∑︁𝑈

𝑡=1
1
𝑁

∑︁𝑁

𝑖=1

√︃
(𝑐𝑖𝑡 − 𝑐𝑖𝑡 )2,

where 𝑁 is the number of skeleton points. The loss L𝑑𝑖𝑠 consid-
ers the estimation performance independently each time. Because
human motions are continuous over time, we further introduce
another loss L𝑐𝑜𝑛 to make the difference between the estimated
bod poses across consecutive times similar to the labeled ones:

L𝑐𝑜𝑛 =
1

𝑈 − 1
∑︁𝑈

𝑡=2
1
𝑁

∑︁𝑁

𝑖=1 ∥(𝑐
𝑖
𝑡 − 𝑐𝑖𝑡−1) − (𝑐𝑖𝑡 − 𝑐𝑖𝑡−1)∥,

where ∥ · ∥ stands for the Huber norm [20]. With these two loss
functions, the network training aims to minimize the overall loss
function L = L𝑑𝑖𝑠 + 𝛼 × L𝑐𝑜𝑛 , where 𝛼 is a hyper-parameter. We
minimize the loss function L by using the Adam optimizer [24].

In this training framework, after we finish the fine-tuning of
the variant tracker T𝑣 in step-2, we freeze its parameters \̃𝑇𝑣 to
fine-tune the parameters \̃𝑇 of the actual tracker T in step-3.

4 EVALUATION
4.1 Implementation
Setup. Figure 11 shows our testbed using TI IWR1443BOOST radar,
which is portable and small in size (8 cm × 7 cm). Each radar has
two Tx and four Rx antennas. We mount two radars at a height of
0.9 m to cover the horizontal and vertical directions. We also deploy
an OptiTrack motion capture system with 12 cameras to collect the
ground truth for evaluation and build the RadarSet dataset.

Radar transmits 20 frames per second (fps), and a frame contains
128 chirps from each Tx antenna. For a chirp, the start frequency 𝑓0,
bandwidth B and chirp duration T are set to be 𝑓0 = 77 GHz, 𝐵 = 3.6
GHz and 𝑇 = 32 ms in the experiment. With the current setting,
the maximum sensing range is 6.2 m and ranging resolution is 4.9
cm. The maximum velocity and velocity sensing resolutions are
±2.5 m/s and 2.9 cm/s, respectively. The average distance between
the activity area in the testbed and the radars is about 3 m.
Data collection.We have recruited 20 users to participate into the
data collection for evaluation. This study has received the univer-
sity’s ethical approval. We have collected data on eight different
activities. In addition to our data collection, we also use two public
datasets. We use the sensing data from eight activities for both
skeleton tracking and activity recognition. These activities cover
many daily activities studied in recent mmWave-based sensing de-
signs, including 1) walking, 2) swinging arms, 3) swinging hands,

Figure 12: Overall error distribution of each skeleton point.

4) lifting a hand, 5) lifting a leg, 6) sitting, 7) using a phone, and 8)
chatting. These activities contain the movements of isolated body
parts and the whole body for a comprehensive evaluation.

1) Our dataset. At the beginning of data collection, we perform
initial calibration for radars to remove reflections from environment.
During data collection, we use OptiTrack to collect the ground truth
of the coordinates for 19 skeleton points at 120 fps, which are down-
sampled to be the same as our tracker’s output rate at 20 fps for
evaluation. Similar to [59, 61], we timestamp OptiTrack frames and
heatmaps to synchronize two data streams. For each activity, users
perform it five rounds, each taking approximately 30 seconds. We
divide users into two groups for the following purposes:

• Group-a) contains 10 users (4F and 6M) to collect our vision-
based dataset for signal synthesis. We also use the mmWave
sensing signals from these 10 users to build the first version
of RadarSet to fine-tune the variant tracker.

• Group-b) contains another 10 new users (5F and 5M) for
evaluation only, whose data does not appear in Group-a).
For each new user, we feed one round of sensing data to the
variant tracker to generate pseudo skeleton point coordinates
(to fine-tune the actual tracker), and the rest for evaluation.

2) Public datasets. In addition to our collected vision-based data,
we also use two public datasets, NTU RGB+D [44] and CMU Mo-
Cap [13], to trigger signal synthesis, and then test the system per-
formance on the 10 users from Group-b) for evaluation.
Network training. For each vision-based dataset, we perform the
signal synthesis to obtain synthesized IF signals per activity per
user from the vision-based dataset. For each vision-based dataset,
we use the synthesized signals to train a primary version of the
variant tracker and the actual tracker. Then, we use the data of 10
users from Group-a) to fine-tune each variant tracker and further
use the fine-tuned variant tracker to generate pseudo coordinates
for each one-round sensing data from 10 new users in Group-b) to
fine-tune the actual tracker. In our current development, the actual
tracker outputs the coordinates of 19 skeleton points at 20 fps.

4.2 Overall Performance
We first examine the skeleton tracking performance. In this evalua-
tion, we compare the following two mmWave-based methods:

• RF-Pose3D [61]: the state-of-the-art mmWave-based skele-
ton trackingmethod, which is trained on the labeledmmWaves.
We examine three versions of RF-Pose3D for a comprehen-
sive evaluation, which are detailed soon.

• SynMotion: the method proposed in this paper.

Performance of SynMotion.We first evaluate the tracking per-
formance of SynMotion for 19 skeleton points whose positions are
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Skeleton Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Average
Axis X 1.9 2.0 2.0 2.2 2.8 2.2 2.5 2.6 5.3 2.2 2.5 3.5 5.3 2.0 2.6 2.6 2.1 4.3 3.4 2.9
Axis Y 1.4 1.4 1.6 1.5 1.8 1.5 1.8 4.1 4.5 1.6 2.3 4.7 5.9 1.4 0.6 0.6 1.4 2.1 2.5 2.5
Axis Z 2.7 2.7 2.9 3.2 3.5 3.1 3.1 3.7 4.8 3.2 3.3 4.4 4.2 2.6 2.7 2.7 2.7 2.6 2.9 3.2
Overall 4.5 4.6 4.8 5.2 6.0 5.1 5.4 7.0 8.8 5.2 5.8 7.9 9.1 4.6 4.3 4.3 4.6 6.5 6.4 5.8

Table 1: Tracking errors (unit: cm) of 19 skeleton points in SynMotion along X, Y and Z axes, whose positions are shown in
Figure 13(a). The overall error is the Euclidean distance between the estimated skeleton point and its ground truth in 3D space.
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Figure 13: (a) Positions of 19 skeleton points tracked by SynMotion. (b) Reconstructed body skeleton points (the third row) as
one user walks compared to the ground truth (the second row).

given in Figure 13(a). Table 1 shows the tracking errors along the
three axes. The overall error is the Euclidean distance between the
estimated skeleton point and its ground truth in 3D space, which
is larger than the error along each individual axis [47]. It can be
seen from Table 1 that for the 10 new users from Group-b), the
average tracking errors of SynMotion along three axes are 2.9 cm,
2.5 cm and 3.2 cm respectively, and the overall tracking error of
5.8 cm is also small. Figure 13 illustrates the tracking performance
of SynMotion as one user walks. We can see that the body pose
reconstructed by SynMotion is close to the ground truth.

In Figure 12, we further plot the error distribution for each skele-
ton point and observe that the overall error is within 5–6 cm for
most skeleton points, while the errors for skeleton points 8, 9, 12
and 13 are slightly larger (7.0 cm, 8.8 cm, 7.9 cm and 9.1 cm), corre-
sponding to each user’s elbows and wrists. This problem has also
been observed in previous tracking designs, like [23], possibly due
to subtle movements of the arms, but their reflection areas for sens-
ing signals are relatively small. We will further improve network
sensitivity for recognizing these four points in future work.

Performance comparison. Next, we compare the performance
of different skeleton tracking methods. All users from Group-b)
are unseen users for SynMotion. We develop the following three
versions of RF-Pose3D for a more comprehensive evaluation:

• RF-Pose3D-Ori: This version follows the original setting
from [61]. We split all the data from Group-b) into two sub-
sets, including training (75%) and testing (25%).

• RF-Pose3D-Tun: We train the tracker using real mmWaves
(and their coordinate labels) from Group-a) and further fine-
tune it using one round of sensing data from each user in
Group-b). Different from SynMotion, the skeleton point co-
ordinates to fine-tune RF-Pose3D-Tun is from OptiTrack.

Figure 14: Performance comparison of different methods.

• RF-Pose3D-Uns: We use real mmWaves (and labels) from
Group-a) to train the tracker and test it directly on Group-b).

We can see from Figure 14 that with the real sensing data and the
corresponding label of skeleton point coordinates from real users,
“RF-Pose3D-Ori” has the best performance (5.3 cm), but the cost to
collect sufficient labeled training data is high. When “RF-Pose3D-
Tun” is only fine-tuned, it does not fully adapt to the unseen users
in this experiment, and the tracking error increases to 4.0–4.8 cm
along three axes with the overall error of 9.8 cm. If “RF-Pose3D-
Uns” works on the unseen users directly without fine-tuning, the
tracking error is large, i.e., 7.3–8.0 cm along three axes with the
overall error of 16.5 cm. For comparison, SynMotion can reduce
the tracking error of each axis to 2.5–2.9 cm, achieving 21.0–48.0%
performance improvement compared to “RF-Pose3D-Tun” that has
the most similar setting to SynMotion. The improvement mainly
comes from the network structure design with LSTMs in SynMotion
to better capture temporal features from sensing signals.
Ablation study. To thoroughly understand the performance of
SynMotion and the effectiveness of our proposed technique, we
conduct an ablation study in this experiment. First, for the signal
synthesis part, we examine the impact of the number of reflection
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(a) (b)

Figure 15: (a) Impact of reflection point for signal synthesis.
(b) Effectiveness of the training framework design.

points adopted for each body part that is an important parameter in
the human body model. In Figure 15(a), we vary this number from 1
to 20. The result shows that even if each body part is represented by
one reflection point, the overall tracking error is not significantly
large, e.g., 6.45 cm. When the number is increased to 10, the error is
less than 6 cm. If we increase it further, the error reduction is trivial.
Because the computation overhead of signal synthesis increases
linearly with this number, we empirically adopt 10 in the current
implementation to balance accuracy and overhead.

In Figure 15(b), we further examine the effectiveness of our
“synthetic-to-real” design. If the actual tracker is trained by the
synthesized data only, its tracking error (“Synthesis-Only”) for
users from Group-b) is large, e.g., 19.17 cm. Using our proposed
training framework, the overall error (“SynMotion”) is reduced to
5.8 cm on average. If we use the ground-truth coordinates of the
fine-tuning data (instead of the pseudo coordinates estimated by the
variant tracker), the overall error (“Fine-Tuning-Plus”) is 4.75 cm,
i.e., the error reduction is insignificant. These results demonstrate
the effectiveness of our proposed training framework.

4.3 Micro-Benchmarks
In this subsection, we conduct micro-benchmark experiments for a
comprehensive understanding of SynMotion’s performance.

Figure 16: Performance at different working distances.

Working distance. The default working distance between the
center of sensing area and the radar is about 3 m, and we change
the working distance in this experiment. For ease of illustration,
we divide the working distances into three groups in Figure 16.
When the distance is moderate (such as 2–4 m), the per-axis error
is 2.4–3.3 cm and the overall error is less than 6 cm. When the radar
is closer to the sensing area (such as 1–2 m), the per-axis error is
further reduced to 1.8–2.5 cm and the overall error is 4.4 cm. When
the working distance is large (such as 4–6 m), the overall error
increases to 7.5 cm. The results suggest that SynMotion performs
well at common radar working distances (such as 1.5–3 m).
Environmental factors. In this experiment, we investigate the
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Figure 17: Examples with various environmental factors.

influence of a range of environmental factors, including surround-
ing furniture, occlusion (via two large monitors) and non-line of
sight (NLOS, via sponge blocks), as shown in Figure 17. In this
experiment, we use the actual tracker from §4.2 (“Overall Perfor-
mance”) before without involving these factors. We denote it as a
“clean” setting. Before radars start working, the initial calibration is
conducted to remove the reflections from the environment, and we
use SynMotion (trained in the “clean” setting) to conduct skeleton
tracking directly in these three scenarios. We find that SynMotion
handles these environmental factors well. Figure 17 shows some
examples of body poses reconstructed by SynMotion.

Figure 18: Performance with various environmental factors.
In Figure 18, we further plot the tracking error for each scenario.

When furniture is present in the environment, we do not observe an
obvious performance drop compared to the “clean” setting. When
occlusion occurs, the tracking performance drops about 17% due
to strong reflections from two large monitors. NLOS scenario has
a greater impact on the system performance. It results in 39% in-
crease in error compared to the “clean” setting, which is also not a
recommended scenario to use radar in practice.

Figure 19: Impact of initial body pose errors.

Initial body-pose error. To fine-tune the variant tracker, SynMo-
tion needs the initial body pose for each activity. In this experiment,
we investigate how errors from initial body poses will affect perfor-
mance. To this end, we intentionally add noise to 19 skeleton points
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of the initial body pose, where the average value of the added noise
varies between 1–10 cm. Figure 19 shows that when the noise is
moderate (for example, within 5 cm), the increased tracking error
is not significant, e.g., less than 3 cm. When noise is added to the
initial body pose, the direction of drift caused to each skeleton point
is independent, rather than a consistent drift for all skeleton points.
Therefore, the resulting tracking error does not increase linearly.

(a) Two users (b) Three users

Figure 20: Examples of tracking multiple users.

Multi-users. SynMotion also has the potential to track multiple
users simultaneously. To this end, we include the vision-based data
for two or three concurrent users performing different activities
in signal synthesis. In this experiment, different users are not very
close to each other (e.g., about 1–1.5 m away). The response in the
heatmap exhibits several clusters and each one corresponds to one
user. Figure 20 depicts examples of body poses reconstructed by
SynMotion for two and three concurrent users. Compared to the
one-user case, Figure 21 shows that the tracking error for multiple
users is moderate, within 3.8–4.5 cm and 5.8–5.9 cm per axis with
two and three concurrent users, respectively. The tracking perfor-
mance degradation is mainly caused by additional reflections from
users, which are not captured explicitly in the signal synthesis.

Figure 21: Performance of tracking concurrent users.

Different vision-based datasets. In this experiment, we use two
public vision-based datasets, NTURGB+D [44] andCMUMoCap [13],
for signal synthesis3, and evaluate the system performance on 10
users from Group-b), which are new users in a new environment for
these two datasets. Because these two datasets track different sets
of skeleton points, they need to be transformed by interpolation to
obtain 19 skeleton points, which may lead to a certain transform
error at first. Compared to our collected RadarSet dataset, result-
ing in 2.5–3.2 cm per-axis error, the tracking error along each axis
based on these two public datasets increases only slightly, which is

Figure 22: Performance from different vision-based datasets.

3.2–3.6 cm and 3.2–3.8 cm, respectively.
Radar facing directions. In this experiment, we investigate the
effect of radar’s facing direction. In particular, we synthesize signals
for one virtual radar position and deploy the radar at a similar
position, which serves as a reference. Then, we rotate the radar’s
facing direction relative to the reference from 15◦ to 30◦ to perform
skeleton tracking. Figure 23 shows that when the facing direction
of the radar is consistent with the reference, the tracking error of
each axis is indeed small, such as 2.9–3.2 cm. When radar is rotated
by 15◦, the error is moderate and increases to 3.9–4.1 cm per axis.
When the rotation is 30◦, the error is relatively large, such as 5.2–5.6
cm per axis in our experiment. Therefore, it is suggested to deploy
the radar in the facing direction as that used in the signal synthesis
for good system performance.

Figure 23: Impact of radar’s facing direction.

New environments. In this experiment, we test SynMotion in
new and unseen environments. All synthesized mmWaves still
come from Groug-a) as before. In each new environment, we collect
only one round of mmWave sensing signals and the initial body
pose, which are fed to the variant tracker, i.e., the same variant
tracker used in §4.2 (“Overall Performance”), to generate the pseudo
coordinates to fine-tune the actual tracker without using external
cameras to annotate them. Figure 24 shows the performance. Since
we do not have OptiTrack to collect the ground-truth coordinates
of skeleton points in these new environments, a common issue for
evaluating wireless sensing systems in new environments, we skip
the numerical tracking error in this experiment. We can see from
Figure 24 that the body pose estimated by SynMotion matches well
with the corresponding body-pose image, which shows that using
SynMotion, we can easily set up a skeleton tracking system and
avoid deploying expensive cameras (such as OptiTrack) to collect
and label training data.

3Since some activities are not included in these two public datasets, we adopt the
same activities as the data we collected in this experiment, with five and four activities
selected from NTU RGB+D and CMU MoCap, respectively.
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Figure 24: Examples from the new and unseen environments.

4.4 Activity Recognition
In this subsection, we examine the performance of activity recogni-
tion by comparing the following two methods:

• Vid2Doppler [4]: the state-of-the-art mmWave-based zero-
shot design that employs a neural network to directly syn-
thesize micro-Doppler spectrum for activity recognition.

• SynMotion: the method proposed in this paper. We convert
the synthesized signal to micro-Doppler spectrum and use a
simple neural network for activity recognition.4

For the above two methods, we use the data from Group-a) to
train the activity recognizer and directly test its performance on the
data from Group-b), i.e., zero-shot recognition for both methods.

1 2 3 4 5 6 7 8

Walking 1 1 0 0 0 0 0 0 0

Swinging arms 2 0 0.93 0 0.01 0 0 0.02 0.04

Lifting a hand 3 0 0 0.88 0 0.1 0 0 0.01

 Sitting 4 0 0.02 0 0.7 0 0 0.2 0.07

Swinging hands 5 0 0 0.06 0.01 0.93 0 0 0

 Lifting a leg 6 0 0.01 0 0.01 0 0.97 0 0.02

Using a phone 7 0 0 0 0.28 0 0 0.65 0.06

 Chatting 8 0 0.03 0.01 0.02 0.01 0.03 0.16 0.74

Figure 25: Confusion matrix of Vid2Doppler.

Figure 25 shows the confusion matrix of Vid2Doppler. The recog-
nition accuracy for the eight activities ranges from 65% to 100%,
with an average accuracy of 84.9%. Vid2Doppler basically treats
each micro-Doppler spectrum as a 2D image and employs deep
learning to generate synthesized ones. From the results, we find
that due to the complexity of the spectrum, it is difficult to achieve
good synthesis with this end-to-end approach, which in turn limits
the recognition accuracy.

1 2 3 4 5 6 7 8

Walking 1 1 0 0 0 0 0 0 0
Swinging arms 2 0 0.96 0 0 0 0 0.01 0.02
Lifting a hand 3 0 0 1 0 0 0 0 0

 Sitting 4 0 0 0 0.85 0 0 0.14 0.01
Swinging hands 5 0 0 0 0 1 0 0 0

 Lifting a leg 6 0 0 0 0 0 1 0 0
Using a phone 7 0 0 0 0.09 0 0 0.88 0.03

 Chatting 8 0 0 0 0.02 0 0 0.12 0.86

Figure 26: Confusion matrix of SynMotion.

4The network takes micro-Doppler spectrum as input, which is then processed by
three CNN layers, one LSTM and one MLP layer to output the classification result.

In SynMotion, we delve into the signal itself, providing clear in-
terpretability for mmWave-based sensing. Therefore, we can obtain
better micro-Doppler spectrum from our synthesized mmWaves,
thereby achieving the higher recognition accuracy. Figure 26 shows
that the accuracy of recognizing these eight activities ranges from
85% to 100%, with an average accuracy of 94.1%.

4.5 System Overhead
Finally, we understand SynMotion’s overhead, including the compu-
tation of signal synthesis and overhead of neural network inference.
Computation of signal synthesis. Figure 27 summarizes the de-
tailed computational overhead of different stages involved in signal
synthesis. In particular, for a 30-second motion trace, it takes about
8 seconds to complete the computation of 16 Tx-Rx on a desktop
with an AMD 3700X CPU. Since synthesis is an one-time effort be-
fore training, this (offline) computational cost is acceptable, and can
be further shortened by using multi-threaded parallel execution.

Figure 27: Computational overhead of signal synthesis.

Inference latency. When SynMotion works, Table 2 shows the
average execution time of four main neural network components,
including attention, convulational (ResNet), LSTM and MLP layers
for one second of mmWave data on an NVIDIA 2080Ti GPU. We
can see from Table 2 that the overall inference time is short, i.e.,
only 2.15 ms, which is lightweight. In our current implementation,
SynMotion is configured to output estimated body poses at 20 fps.

Attention ResNet LSTM MLP Overall
Time 0.21 ms 1 ms 0.9 ms 0.04 ms 2.15 ms

Table 2: Inference time of each neural network component.

5 POINTS OF DISCUSSION

Multiple users. With our current design, system performance de-
grades as more users are tracked simultaneously. It is mainly caused
by additional reflections from each other that are not captured ex-
plicitly in the signal synthesis. Therefore, an important future work
is to explore effective signal synthesis and sensing methods for
multiple users, especially when users are in close proximity.
Unseen motions. In this paper, all the motions to be tracked
using mmWave signals should be covered in the selected vision-
based dataset. In other words, the current SynMotion design is not
positioned to track the skeleton points of the user’s body under
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unseen motion, and we plan to further remove or mitigate this
limitation in our future work.
Other wireless sensing signals. The design of SynMotion focuses
on FMCW mmWaves. Its overall signal synthesis workflow and
training framework have the potential to be extended to other
sensing signals, but dedicated solutions, such as signal formulation
and tracker design, need to be investigated for these new sensing
signals. We plan to explore this opportunity in the future.

6 RELATEDWORK
Human motion sensing. Human motion sensing and analyt-
ics [53] were actively studied using wearable sensors [35, 38, 45, 46],
microphones [31], pedometers [16], etc. With a rapid advancing
of deep learning, vision-based methods [1, 2, 6, 21, 30] by using
cameras or depth sensors can achieve even higher sensing accuracy.
However, they are limited to the inherent constraints on line-of-
sight views, light conditions, occlusions and privacy issues [48].

To address these issues, RF-based solutions [55] emerge recently.
E-eyes [52] uses commodity Wi-Fi devices to recognize different
daily activities. RF-Net [15] proposes a framework based on meta-
learning for one-shot recognition of human activities, which works
with Wi-Fi and other wireless signals like FMCW and impulse
radio. OneFi [54] uses Wi-Fi to enable one-shot recognition for
unseen activities. Octopus [12] introduces a general platform to
enable human/object imaging, passive localization and vibration
sensing. In addition to activity recognition, WiFi-Person [50] and
WiPose [23] further achieve 2D and 3D body pose tracking using
Wi-Fi. However, Wi-Fi sensing signals are sensitive to many factors
from environments, such as the room layout and nearby objects [47],
which may affect the tracking performance.

Another popular family of solutions employs FMCW mmWave
specifically for sensing, because FMCWmmWave can achieve more
accurate signal measurements, such as time of flight (ToF) [56]. For
example, by using an assembled T-shaped mmWave antenna ar-
ray, the authors achieve the 2D and then 3D pose tracking in [59]
and [61], respectively. By using commercial radars, the authors
in [27, 34, 58] enable human activity recognition. Soli [32] per-
forms gesture sensing using mmWave radar. Other designs [28, 43]
take one more step to leverage deep learning to achieve human
skeletal posture reconstruction using commercial radars. Recently,
RF-Avatar [60] and mmMesh [56] further enable human mesh con-
struction from mmWave signals. mPose [47] uses domain discrim-
inator to remove user-dependent features to track unseen users.
m3Track [25] achieves an mmWave-based posture tracking for mul-
tiple users. However, these existingmethods face a common scarcity
issue of training data. SynMotion aims to address this important
problem and facilitate mmWave-based human sensing.
mmWave synthesis. There are existing studies to synthesize the
sensing signatures of radar data. One popular example is the micro-
Doppler spectrum. Authors in [33] use the motion capture data to
synthesize the micro-Doppler spectrum for activity classification,
such as walking and running. However, as the data is relatively
sparse in previous methods, studies [17, 29] further perform the
synthesis by using point clouds from depth cameras. To make syn-
thesis more similar to real ones, generative adversarial networks are
then adopted with a physics-aware design in [39], augmentation in

[18], video inputs in recent Vid2Doppler [4], etc. They can address
the scarcity of mmWave training data for activity recognition [7, 8].
All these designs propose to synthesize the micro-Doppler signa-
ture for activity recognition merely, while SynMotion is positioned
to synthesize the source of various sensing signatures to prompt
the interpretability of mmWave-based sensing. With high-quality
synthesized signals, we can use them to derive various sensing sig-
natures to enable sensing services flexibly and improve the sensing
performance (§4). One recent work [5] also proposes to facilitate RF
sensing from vision-based datasets, which designs for Wi-Fi signals
and focuses on activity recognition. In SynMotion, we synthesize
mmWaves at the signal level and further address the “synthetic-to-
real” problem for fine-grained skeleton tracking.

In fact, the classical ray tracing technique [57] is proposed to
formulate the process from signal transmission to signal reception
via reflections, and our design is a special type of ray tracing, specif-
ically for FMCW mmWave, by considering its properties, such as
linearly varying phase and IF signals, in the signal synthesis.
Learning techniques. In this paper, SynMotion is inspired by
the “synthetic-to-real” strategy [11, 38] to cope with the subtle
distinct between synthesized signals and real ones, which is one
popular technology in the transfer learning and domain adaption
fields. Recent success of synthetic-to-real design [9, 10] leverages a
baseline model fine-tuned by “ImageNet” [26] and use it to guide
the generalization of the real network. This motivates us to design
a variant tracker and build a RadarSet dataset, which can be further
enriched and contributed by our community in a crowd-sourcing
manner. In addition, how to obtain the corresponding coordinates
of user skeleton points for the mmWaves to enable the fine-tuning
of the actual tracker has not been studied before. Therefore, we
propose a new training framework in SynMotion. Finally, the zero-
shot learning starts to be explored in the internet of things (IoT)
field via wearable sensors [36]. In this paper, we focus on such an
activity recognition design using mmWave-based sensing signals.

7 CONCLUSION
This paper presents SynMotion, a new system to address the scarcity
issue of training dataset for mmWave-based human motion sensing.
The key novelty of SynMotion is to employ available vision-based
datasets to synthesize mmWave sensing signals that bounce off
the human body. By doing this, the synthesized signals can inherit
labels from vision-based datasets directly. SynMotion demonstrates
the ability to generate such labeled synthesized data with high qual-
ity. To design SynMotion, we address two challenges, including the
inherent complication of mmWave synthesis and the micro-level
differences compared to real mmWave sensing signals. We address
these challenges and develop a prototype system. Extensive experi-
ments show performance gains achieved by SynMotion compared
to the state-of-the-art mmWaved-based sensing methods.
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