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ABSTRACT

Atrial �brillation (AF) is characterized by irregular electrical im-

pulses originating in the atria, which can lead to severe compli-

cations and even death. Due to the intermittent nature of the AF,

early and timely monitoring of AF is critical for patients to pre-

vent further exacerbation of the condition. Although ambulatory

ECG Holter monitors provide accurate monitoring, the high cost of

these devices hinders their wider adoption. Current mobile-based

AF detection systems o�er a portable solution. However, these sys-

tems have various applicability issues, such as being easily a�ected

by environmental factors and requiring signi�cant user e�ort. To

overcome the above limitations, we present AcousAF , a novel AF

detection system based on acoustic sensors of smartphones. Par-

ticularly, we explore the potential of pulse wave acquisition from

the wrist using smartphone speakers and microphones. In addition,

we propose a well-designed framework comprised of pulse wave

probing, pulse wave extraction, and AF detection to ensure accu-

rate and reliable AF detection. We collect data from 20 participants

utilizing our custom data collection application on the smartphone.

Extensive experimental results demonstrate the high performance

of our system, with 92.8% accuracy, 86.9% precision, 87.4% recall,

and 87.1% F1 Score.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting.
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1 INTRODUCTION

Atrial �brillation (AF), characterized by irregular electrical impulses

originating in the atria, stands as the most prevalent arrhythmia

[15]. Signi�cantly, the presence of AF has a strong association with

ischemic stroke [17], a severe condition capable of causing long-

term disability or even death. Given the growing prevalence and

the potential for severe complications, meticulous attention should

be directed toward the early detection of AF.

However, diagnosing AF presents challenges in practice. Firstly,

a considerable number of individuals with AF are asymptomatic, as

evidenced by at least one-third of patients experiencing no symp-

toms [23]. This lack of symptoms discourages them from seeking

cardiovascular examinations at hospitals. Additionally, AF tends

to be intermittent, further complicating diagnosis. Furthermore,

the clinical diagnosis of AF heavily relies on electrocardiogram

(ECG), which demands costly medical facilities for data collection

and specialized medical expertise for interpretation.

To tackle the mentioned issues, many research e�orts have

focused on utilizing mobile devices, such as smartwatches and

smartphones, for AF detection. A common approach in current

studies involves using smartwatches equipped with photoplethys-

mography (PPG) sensors to gather pulse wave data for analysis

[1, 5, 14, 18, 26, 28, 30]. While PPG-based methodologies o�er cost-

e�ective solutions, they are susceptible to variations in skin tone

[21] and may cause discomfort to users due to emitted light, partic-

ularly when utilized during nighttime. Another method involves

analyzing seismocardiography (SCG) or ballistocardiography (BCG)
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data captured by the inertial measurement unit (IMU) of smart-

phones [11, 22, 29]. Given the prevalence of IMU sensors in smart-

phones, this approach is feasible. However, it necessitates users to

recline and position the smartphone on their chests, demanding

the user’s e�ort and applicable only in speci�c scenarios. The third

approach involves using mobile ECG devices to acquire heart activ-

ity data for analysis [3, 4, 8–10, 12, 13, 19]. Although ECG serves

as the gold standard for AF detection, mobile ECG devices cannot

provide data of the same quality as medical ECG devices, leading to

diminished accuracy. What’s more, the high cost of these devices

prevents their wider adoption.

To overcome the above limitations, we propose AcousAF, an AF

detection system that leverages acoustic sensors (e.g., microphones

or speakers) to capture the pulse waves from the wrists. AcousAF

o�ers a user-friendly solution for AF screening. When a user expe-

riences discomfort, he or she can simply use their smartphone to

perform a self-test anywhere, providing immediate results without

the need for additional equipment. This approach addresses the

issue of delayed diagnosis and treatment associated with AF’s in-

termittent nature. It is particularly helpful in AF screening because

many AF cases are intermittent and may not be detected during a

hospital visit.

Although promising, two challenges underlie the design:

• The feasibility of using acoustic sensing to capture pulse

waves via smartphones remains unexplored. While APG [6]

demonstrates the potential of using in-ear microphones to

detect pulse waves, it leverages the unique structure of the

ear canal, which di�ers signi�cantly from the wrist. There-

fore, we conducted a feasibility study and con�rmed that it

is possible to use acoustic sensing technologies to extract

pulse waves from the wrist.

• Despite proving feasible, the highly sensitive nature of acous-

tic sensing presents challenges in extracting high-�delity

pulse waves. To address this, we propose a Channel Phase

Response (CPR)-based pulse wave extraction approach. This

method involves emitting a sine-wave probing signal and

using CPR estimation to extract the pulse wave from the

signal re�ected o� the wrist.

We summarize our contributions as follows:

• To the best of our knowledge, AcousAF is the �rst AF de-

tection system implemented on COTS smartphones using

acoustic sensing technologies. This innovative approach uti-

lizes smartphones’ built-in microphones and speakers for

non-intrusive pulse wave monitoring, eliminating the need

for additional sensors.

• We propose a well-designed pipeline that incorporates pulse

wave probing, pulse wave extraction, and AF detection to

facilitate accurate AF detection.

• We conduct experiments involving 20 subjects, comprising 6

individuals with AF and 14 healthy individuals. The results

demonstrate the high performance of our system, achieving

92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1

Score.

PPG Sensor
Smartphone

PPG Sensor
Smartphone

(a) (b)

Figure 1: Feasibility study setup and result. (a): Scenario of

feasibility study. The PPG sensor is placed at the �ngertip,

and the smartphone is placed at the wrist above the radial

artery. (b): Comparison of PPG and Acoustic CPR. The CPR

waveform shows a high similarity with the PPG waveform.

2 FEASIBILITY STUDY

Reliable detection of atrial �brillation requires the acquisition of

high-�delity pulse waves. The radial artery, located on the thumb

side of the wrist, has strong pulsations, and these pulsations due

to cardiac activity can be sensed through the �ngertip by pressing

on it with the �nger. Similarly, if the speaker and microphone of a

smartphone are pressed on the radial artery like a �nger, can the tiny

deformations of the skin surface caused by the heartbeat be sensed?

To answer this question, we conduct a feasibility study. In par-

ticular, we propose harnessing CPR estimation to analyze the tiny

oscillations induced by the wrist’s radial artery. A Redmi Note 13

Pro smartphone and a MAXM86161 PPG sensor are utilized for

concurrent acquisition of acoustic and PPG data, as illustrated in

Fig. 1(a). The study aims to compare the correlation between esti-

mated CPR and PPG waveform. The smartphone, positioned above

the wrist with its microphone facing the radial artery, emits an

18,000 Hz sine wave signal through the speaker and records the

received signal for analysis. Subsequently, the estimated acoustic

CPR is obtained using the algorithm detailed in Sec. 5. At the same

time, the PPG sensor placed at the �ngertip is recording PPG data

as a comparison.

The experimental results, presented in Fig. 1(b), exhibit a strong

correlation between the estimated CPR and PPG data, demonstrat-

ing the feasibility of extracting high-�delity pulse waves from the

wrist using smartphone speakers and microphones. This opens up

the potential for detecting AF.

3 SYSTEM OVERVIEW

Fig. 2 illustrates the overview of our system, which is composed of

three modules: Pulse Wave Probing: this module entails probing

pulse waves from the wrist based on the speakers and microphones

from the smartphones; Pulse Wave Extraction: noise of the ac-

quired signals are removed and pulse waves are isolated utilizing

our proposed CPR estimation method; AF Detection: feature ex-

traction is performed to extract the RR interval features and statistic

features from the extracted pulse waves, and AF classi�cation is

conducted for �nal AF detection.
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Figure 2: AcousAF system overview.

4 PULSE WAVE PROBING

To accurately identify AF, the classical approach involves capturing

pulse wave signals, which are intricately linked to cardiac activity.

To facilitate this, our method involves monitoring minute wrist

changes, utilizing a sine wave signal as a probing signal. As the

transmitted signal traverses the wrist’s skin and reaches the micro-

phone, it is in�uenced by the underlying pulse wave information.

AcousAF algorithm exploits this by calculating the di�erence be-

tween the original and received signals, as detailed in Sec. 5.

In aiming to implement accurate pulse wave probing, we also

prioritize user experience. Our system sets the frequency of the

probing signal at 18 kHz, which is imperceptible to most people. Ad-

ditionally, the high-frequency probing signal reduces interference

from daily noise, such as background sounds and conversations.

5 PULSE WAVE EXTRACTION

5.1 Pre-processing

Upon reception by the microphone, the signal may be contaminated

with ambient noise. To mitigate this, a bandpass �lter is employed

for each carrier, con�gured with a lower cuto� frequency of 5 − 50

Hz and a higher cuto� frequency of 5 +50Hz, where 5 is the probing
signal’s frequency, ensuring a clean signal for further analysis.

5.2 Pulse Wave Extraction

Pulse wave extraction lies at the core of cardiovascular monitor-

ing for AF detection. This crucial process involves capturing and

analyzing subtle variations in the pulse signal, which re�ect the

dynamic activity of the heart. To achieve this, we estimate CPR

for an 18 kHz sine wave probing signal to extract the pulse wave.

The acoustic signal transmitted from a smartphone speaker can be

represented as ( (C) = U cos(2c 5 C), where U is the gain coe�cient,

and 5 stands for the frequency of the probing signal, which is 18

kHz here. The signal transmitted through wrist skin and received

by a smartphone speaker can be denoted as:

(A (C) = �(C) cos(2c 5 C − \2 (C) − \? ),

where �(C) is the amplitude of the received signal, \2 (C) represents
the phase response of the channel, i.e. CPR, and \? denotes the

phase o�set due to hardware delay and system noise. In most cases,

\? can be considered as a constant and does not change with time.

Next, we utilize In-phase and Quadrature (I/Q) demodulation

to extract the CPR for the probing signal. We �rst multiply the

(a) (b)

Figure 3: Comparison of CPR results between subjects with

(a) NSR and (b) AF.

received signal (A (C) by cos(2c 5 C) to give a signal with the addi-

tion of one low-frequency component and multiple high-frequency

components, which can be expressed as:

(A (C) cos(2c 5 C) = �(C) cos(2c 5 C − \2 (C) − \? ) cos(2c 5 C)

=

1

2
�(C) [cos(\2 (C) + \? )

+ cos(4c 5 C − \2 (C) − \? )] .

In this equation, cos(4c 5 C−\2 (C)−\? ) is naturally of high-frequency
component, and cos(\2 (C) + \? ) is the low-frequency component.

After processing the signal with a low-pass �lter, we can obtain the

low-frequency component, which is called � signal:

� (C) = 1

2
�(C) cos(\2 (C) + \? ).

Similarly multiplying the received signal (A (C) by sin(2c 5 C) and
passing it through a low-pass �lter yields the & signal:

& (C) = 1

2
�(C) sin(\2 (C) + \? ) .

Once � and& signals are obtained, they are downsampled to 150 Hz

to accelerate the computation for subsequent procedures. To obtain

estimated CPR q4BC , we only need to calculate the 0A2C0=(&� ):

q4BC (C) = arctan

(

&

�

)

= arctan

(

1

2
�(C) sin(\2 (C) + \? )

1

2
�(C) cos(\2 (C) + \? )

)

= \2 (C) + \? .

Fig. 3 illustrates the distinct patterns of CPR in subjects with

normal sinus rhythm (NSR) and those with AF. High-quality signals

like Fig. 3(a) and Fig. 3(b) exhibit a clear and stable heartbeat pattern,

where AF subjects demonstrate markedly di�erent features than

NSR subjects.

6 AF DETECTION

In this section, we detail the approach taken by AcousAF for detect-

ing AF. We begin with the explanation of the relationship between

ECG and CPR collected by AcousAF , followed by the peak detec-

tion and extraction of CPR features. In the end, we discuss the AF

detection model that utilizes machine learning techniques.
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Figure 5: Comparison of ECG of AF and NSR.

6.1 Relationship Between ECG and CPR

The golden method for diagnosing AF is the ECG. To implement

AF detection using acoustic sensing, we have to demonstrate the

relationship between the CPR waveform and the ECG waveform.

ECG waveform typically consists of several components, the P

wave, the T wave, and the QRS complex, as shown in Fig. 4(a).

As illustrated in Fig. 5, compared to NSR subjects, AF patients

exhibit unstable intervals between adjacent R-waves in their ECG

waveforms, known as RR intervals. These intervals are considered

to correspond to the intervals between systolic peaks (also known

as RR intervals for simplicity) in CPR waveform, as depicted in

Fig. 4(b), which contributes to di�erentiating AF from NSR. Hence,

we extracted waveform features based on the RR intervals of CPR

and used them to train the model.

6.2 Peak Detection

For the peak detection of systolic peaks in received signals, we used

the algorithm proposed by Bishop et al.[2], which is an optimization

version of Scholkmann algorithm [24]. The algorithm has been

implemented in a python toolbox NeuronKit2 [16] for us to utilize.

6.3 Feature Extraction

We refer to the extraction method of signal features in related

works [7, 25] and further incorporate some additional features,

�nally identifying the 12 RR interval features:

• minHR: Minimum value of all RR intervals.

• meanHR: Mean value of all RR intervals.

• medianHR: Median value of all RR intervals.

• skRR: Skewness of all RR intervals.

• SDRR: Standard deviation of the RR intervals.

• CVRR: Standard deviation of the RR intervals divided by

the mean of the RR intervals.

• pNN50: Proportion of RR intervals greater than 50 ms, out

of the total number of RR intervals.

• RMSSD: Square root of the mean of the squared successive

di�erences between adjacent RR intervals.

• SDRMSSD: SDRR / RMSSD, a time-domain equivalent for

the low frequency to high frequency ratio [27].

• SD ratio:

SD ratio =

√
0.5 × RMSSD2

√
2 × SDRR2 − 0.5 × RMSSD2

.

• SDSD: Standard deviation of the successive di�erences be-

tween RR intervals.

• CVSD: Root mean square of successive di�erences (RMSSD)

divided by the mean of the RR intervals (meanHR).

, and 14 statistical features:

• HF: Spectral power of high frequencies (15 Hz to 4 Hz).

• HFn: Normalized high frequency, obtained by dividing the

high frequency power by the total power.

• LnHF: Log-transformed HF.

• TP: Total spectral power.

• SD1: Standard deviation perpendicular to the line of identity.

• SD2: Standard deviation along the identity line. Index of

long-term HRV changes.

• SD1/SD2: Ratio of SD1 to SD2.

• S: Area of ellipse described by SD1 and SD2 (c × SD1× SD2).

• Di�erence: Ratio of the sum of the di�erences between

successive RR intervals to the sum of the di�erences between

these di�erences.

Di�erence =

∑=
8=0 Δ~ (G8 )

∑=
8=0 Δ(Δ~ (G8 ))

.

• Sample Entropy: Sample entropy of the input signal.

• Shannon Entropy: Shannon entropy of the input signal.

• Approximate Entropy: Approximate entropy of the input

signal.

• Multiscale Entropy: Multiscale entropy of the input signal.

• Turning Point Ratio: Ratio of turning points (points greater

or less than their two neighbors) to the total data length.

6.4 AF Detection Model

Before using the extracted features as inputs for the classi�er, we

normalize each feature by subtracting themean value of that feature

across all samples and dividing it by the variance. This normaliza-

tion process helps to mitigate the impact of the order of magnitude

di�erences between features.

Following the normalization of features, AcousAF proceeds with

the machine learning-based AF detection model. We evaluate sev-

eral classi�ers, including Linear Support Vector Classi�cation (SVC),

AdaBoost, Decision Tree, k-Nearest Neighbors (kNN), and Random

Forest. Ultimately, Linear SVC demonstrates superior performance

compared to the others, which is chosen for the model training.

7 IMPLEMENTATION

Our system is implemented on a Redmi Note 11 Pro smartphone

with built-in speakers and microphones. Acoustic data are collected

using the smartphone and subsequently transferred to a computer

for further processing. The smartphone records at a sampling rate of
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48,000 Hz. Reference ECG data are obtained from the LEPU Three-

lead ECG Monitor PC-80D, with a sample rate of 150 Hz. Both

acoustic and ECG data are annotated using Label Studio, with ECG

serving as the ground truth reference. Algorithms detailed in Sec. 5

are implemented with MATLAB 2023b. PPG data and CPR data are

aligned by their recording start time, with an error margin of less

than 10 seconds. For Sec. 6, we use the Python library NeuroKit2[16]

to detect the peaks of pulse waves and extract features. Besides, we

use Scikit-learn [20] of version 1.3.2 for model setup and training.

8 EVALUATION

In this section, we fully evaluate our system with overall perfor-

mance and system robustness.

8.1 Experiment Setup

8.1.1 Dataset Collection. We recruited 20 participants aged from

20 to 89 years (average 45.5) from our university and its a�liated

hospital. Among them, 6 were AF patients, and 14 were not. Exper-

iments were conducted in a quiet conference room or ward. For

evaluatingAcousAF ’s performance, we collected acoustic data using

the top microphone and speakers of a Redmi Note 13 smartphone

at a sample rate of 48,000 Hz, and ECG data using the LEPU three-

lead ECG Monitor PC-80D at a sample rate of 150 Hz. Each data

recording lasted 30 seconds, and participants engaged for about

30 minutes each. We collected 764 valid data pieces in total. The

study was approved by the Institutional Review Board (IRB) of our

institution. 1

8.1.2 Ground Truth. Since ECG is the gold standard for diagnosing

atrial �brillation, we used it as the ground truth for our data. We

acquired signals at the radial artery while simultaneously using

the LEPU three-lead ECG Monitor PC-80D for ECG detection. Data

from the smartphones and ECG patch were aligned using times-

tamps. Expert cardiologists examined and labeled the records as

either AF or non-AF.

8.2 Metrics

We used a confusion matrix to analyze our model’s training results,

de�ning AF records as positive samples and NSR records as nega-

tive samples. From the confusion matrix elements—True Negatives

(TN), True Positives (TP), False Negatives (FN), and False Positives

(FP)—we calculated the following metrics:

• Accuracy: Measures overall correctness, calculated as
)#+)%

)#+)%+�#+�% .
• Precision: Quanti�es correctly predicted positive samples

out of all predicted positive samples, calculated as )%
)%+�% .

• Recall: Assesses correctly predicted positive samples out of

all actual positive samples, calculated as )%
)%+�# .

• F1 Score: Considers both precision and recall, calculated as

2 × precision×recall
precision+recall .

8.3 Overall Performance

We adopted leave-one-out cross-validation to test our model’s over-

all performance. Each time one participant was kept as test set and

1SUSTech IRB No. 20240084.
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Figure 6: Averaged confusion matrix of leave-one-out valida-

tion test results.
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the remaining participants were taken as training set. While testing

each subject, the number of TP, TN, FP, and FN were recorded and

accumulated for calculating performance metrics, and the decision

scores were also recorded for drawing the Precision-Recall (PR)

curve.

Fig. 6 illustrates the confusion matrix composed of the results

from all the involved subjects. Our system achieves an average of

92.8% accuracy, 86.9% precision, 87.4% recall, and 87.1% F1 Score.

That is to say, AcousAF can e�ectively distinguish AF subjects from

non-AF subjects without obvious bias.What’smore, Fig. 7 shows the

Precision-Recall (PR) curve with average precision (AP). AcousAF

has an AP of 0.909, indicating that the system can accurately detect

AF with relatively high recall and precision simultaneously.

8.4 Impact of Background Noise

In our previous experiments, data were collected in noise-free envi-

ronments. To evaluate the robustness of our system, we collected

noise-polluted data in both conversation and entertainment scenar-

ios as test sets. Meanwhile, the data used in the overall performance

evaluation serves as the training set. We ensure that no subjects

appeared in both the training and test sets. Additionally, each sce-

nario involves one subject with AF and one without AF. In the
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conversation scenario, subjects were asked to talk freely at a vol-

ume exceeding 40 dB. In the entertainment scenarios, subjects were

required to watch TV or play music at volumes exceeding 40 dB to

simulate real-world conditions.

Fig. 8 compares the overall performance in noise-free environ-

ments to that in noisy environments, demonstrating that our system

maintains relatively high performance in terms of accuracy and

F1 score despite the background noise. Notably, the system shows

extremely high precision and very low recall in noisy scenarios,

indicating that the model behaves cautiously under these condi-

tions. This caution may be attributed to the insu�cient amount of

noise-polluted data in the training set.

8.5 Performance on Di�erent Machine Learning
Models

As outlined in Sec. 6.4, AcousAF constructs the AF detection model

using Linear SVC. In this section, we evaluate the performance of

Linear SVC in comparison with four other well-known classi�ers:

AdaBoost, Decision Tree, kNN, and Random Forest. The results

are presented in Fig. 9, which indicates that Linear SVC generally

outperforms the other four classi�ers. Notably, the kNN classi�er

shows better recall performance than Linear SVC. However, kNN’s

performance is worse in the remaining three metrics. Overall, the

comparison underscores the robustness and e�ectiveness of the

Linear SVC model in the context of AF detection, making it the

preferred choice for AcousAF .

9 LIMITATIONS AND FUTUREWORK

Despite the e�ectiveness of AcousAF in detecting AF, it has several

limitations. This section outlines these limitations and suggests

areas for future improvement.

Interference from Other Arrhythmias. AcousAF may be af-

fected by other arrhythmias, such as atrial �utter and premature

contractions, which share similar features with AF. Future work

should involve studying a diverse range of arrhythmias to enhance

the system’s di�erentiation capabilities.

Pulse Wave Puri�cation. In Sec. 8.3, AcousAF achieved an

accuracy of 92.8%. However, there is potential for further perfor-

mance improvement by re�ning the pulse wave extraction pipeline.

Future e�orts should focus on enhancing the recovery of pulse

waves under poor signal-to-noise ratio conditions to achieve higher

overall performance.

Feature Simpli�cation. Currently, AcousAF uses 26 features

for AF detection, which is time-consuming. Future work will aim

to reduce the number of features to streamline the process while

maintaining accuracy.

Privacy and Security.AcousAF leverages mobile phones’ speak-

ers and microphones to probe users’ pulse waves for AF detection.

However, the use of microphones may compromise users’ privacy

and introduce vulnerabilities. Future work will explore ways to

mitigate these risks and ensure the security and privacy of users’

data.

10 CONCLUSION

In conclusion, this paper presents AcousAF , a novel AF detection

system based on acoustic sensors of COTS smartphones. In spe-

ci�c, AcousAF �rstly validates the feasibility of leveraging acoustic

sensors of smartphones to acquire high-�delity pulse waves. In ad-

dition, a well-designed processing pipeline that incorporates pulse

wave probing, pulse wave extraction, and AF detection is proposed

to facilitate accurate AF detection. Furthermore, we collect data

from 20 participants utilizing our implemented data collection ap-

plication. Extensive experiment results on these participants across

diverse scenarios demonstrate that our system can achieve superior

performance, with an overall performance of 92.8% accuracy, 86.9%

precision, 87.4% recall, and 87.1% F1 Score in AF detection.
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